Marshall A M, Olkin I. Inequalities: Theory of Majorization and Its Application[M]. New York:Academies Press,1979.
[2]
王伯英. 控制不等式基础[M]. 北京:北京师范大学出版社,1990.
[3]
Marquez J B R. American Mathematical Monthly,1996,103(6):509.
[4]
Chapman R J. A simple proof of Noether's theorem[J]. Glasgow Math J,1996,38:49-51.
[5]
匡继昌. 常用不等式[M]. 4版. 济南:山东科技出版社,2010.
[6]
Shi H N, Wu S H, Qi F. An alternative note on the Schur-convexity of the extended mean values[J]. Math Inequal Appl,2006,9(2):219-224.
[7]
Shi H N, Jiang Y M, Jiang W D. Schur-convexity and Schur-geometrically concavity of Gini mean[J]. Comput Math Appl,2009,57(2):266-274.
[8]
Shi H N, Li D M, Gu C. Schur-convexity of a mean of convex function[J]. Appl Math Lett,2009,22(6):932-937.
[9]
Shi H N, Mihaly B, Wu S H, et al. Schur convexity of generalized Heronian means involving two parameters[J]. J Inequal Appl,2008,doi:10.1155/2008/879273.
[10]
Shi H N, Wu S H. Majorized proof and refinement of the discrete Steffensen's inequality[J]. Taiwan J Math,2007,11(4):1203-1208.
Chu Y M, Zhang X M. Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave[J]. J Mathematics of Kyoto University,2008,48(1):229-238.
[14]
Guan K Z. Some properties of a class of symmetric functions[J]. J Math Anal Appl,2007,336(1):70-80.
[15]
Wen J J, Yuan J, Yuan S F. An optimal version of an inequality involving the third symmetric means[J]. Proc Indian Acad Sci:Math Sci,2008,118(4):505-516.
[16]
Wu S H. Generalization and sharpness of the power means inequality and their applications[J]. J Math Anal Appl,2005,312(2):637-652.
[17]
Wu S H, Debnath L. Inequalities for convex sequences and their applications[J]. Comput Math Appl,2007,54(4):525-534.
[18]
Zhang X M, Chu Y M. Convexity of the integral arithmetic mean of a convex function[J]. Rocky Mountain J Math,2010,40(3):1061-1068.
[19]
Xia W F, Chu Y M. The Schur multiplicative convexity of the generalized Muirhead mean[J]. International J Functional Analysis, Operator Theory and Applications,2009,1(1):1-8.