全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类积分方程的全局吸引集

, PP. 327-330

Keywords: 吸引集,积分方程,非负矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过建立一个新的向量积分不等式,结合非负矩阵的性质,获得了一类具有时滞的非线性积分方程存在全局吸引集的便于验证的充分条件,并获得了零解渐近稳定的充分条件,丰富了对于非线性差分系统吸引集的研究结果,建立的积分不等式还可用于其它系统吸引集和不变集的研究.

References

[1]  徐道义. 线性时变离散大系统的稳定性[J]. 科学通报,1983,21(18):1-152.
[2]  廖晓昕. 动力系统的稳定性理论和应用[M]. 北京:国防工业出版社,2000:296-358.
[3]  马志霞,郭庆义,徐道义. 一类积分方程的稳定性与吸引域[J]. 数学杂志,1999,19(3):209-303.
[4]  王联,章毅. 解析非线性差分系统的稳定性[J]. 数学学报,1995,38(3):355-362.
[5]  Kolmanovskii V, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations[M]. London:Kluwer Academic Publishers,1999:285-288.
[6]  Laskshmikantham V, Trigiante D. Theory of Difference Equations, Numberical Methods and Applications[M]. New York:Academic Press,1988.
[7]  Xu D Y. Integro-differential equations and delay integral inequalities[J]. Tohoku Math J,1992,44:365-378.
[8]  龙述君,向丽. 一类具有连续分布时滞的Hopfield神经网络的稳定性[J]. 四川师范大学学报:自然科学版,2006,29(5):566-569.
[9]  龙述君. 具有分布时滞的脉冲Cohen-Grossberg 神经网络的指数稳定性[J]. 四川师范大学学报:自然科学版,2009,32(1):68-71.
[10]  Gu H B. Mean square exponential stability in high-order stochastic impulsive BAM neural networks with time-varying delays[J]. Neurocomputing,2011,74:720-729.
[11]  Xiang L, Teng L Y, Wu H. A new delay vector integral inequality and its application[J/OL]. J Inequal Appl,2010,2010:927059.
[12]  He D H, Wang X H. Attracting and invariant sets of impulsive delay Cohen-Grossberg neural networks[J]. Nonl Analy:Hybrid Systems,2012,6:705-711.
[13]  王广兰, 赵洪涌. 非线性抽象泛函微分方程的吸引性[J]. 四川大学学报:自然科学版,2002,39(5):810-814.
[14]  崔伟业,赵洪涌. 具有连续分布时滞的中立型Hopfield神经网络的吸引集[J]. 四川大学学报:自然科学版,2000,37(2):168-173.
[15]  Xu D Y, Yang Z C. Attracting and invariant sets for a class of impulsive functional differential equations[J]. J Math Anal Appl, 2007,329:1036-1041.
[16]  杨志国,黄玉梅. 具有混合时滞的Cohen-Grossberg脉冲神经网络的指数耗散性[J]. 四川大学学报:自然科学版,2010,47(3):464-467.
[17]  Berman A, Plemmons R J. Nonnegative Matrices in Mathematical Sciences[M]. New York:Academic Press,1979.
[18]  Ma Z X, Wang X H. A new singular impulsive delay differential inequality and its application[J/OL]. J Inequal Appl,2009,2009:461757.
[19]  Huang Y M, Xu D Y, Yang Z G. Dissipativity and periodic attractor for non-autonomous neural networks with time-varying delays[J]. Neurocomputing,2007,70(16):2953-2958.
[20]  Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge:Cambridge University Press,1985:503-503.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133