全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新的广义混合矢量平衡问题(英)

, PP. 469-475

Keywords: 广义混合矢量平衡问题,广义混合矢量似变分不等式问题,Nadler定理,KKM定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Banach空间内引入和研究了一类新的广义混合矢量平衡问题.应用KKM定理和Nadler不动点定理,在适当假设下对这类新的广义混合矢量平衡问题的解证明了2个新的存在性定理.

References

[1]  Giannessi F. Theorems of Alternative, Quadratic Programs and Complementarity Problems[C]//Cottle R W, Giannessi F, Lions J L, eds. Variational Inequalities and Complementarity Problems. New York:John Wiley & Sons,1980:151-186.
[2]  Hartman P, Stampacchia G. On some nonlinear elliptic differential functional equations[J]. Acta Math,1977,115:271-310.
[3]  Ding X P. The generalized vector quasi-variational-like inequalities[J]. Comput Math Appl,1999,37:57-67.
[4]  Giannessi F. Vector Variational Inequalities and Vector Equilibrium[C]. Dordrecht:Kluwer Academic Publishers,2000:113-123,125-140,307-320,351-361.
[5]  Ding X P, Salahuddin. Vector quasi-variational-like inequalities in Hausdorff topological vector spaces[J]. Optim Lett,2012,DOI:10.1007/s11590-012-0464-x.
[6]  Ceng L C, Guu S M, Yao J C. Generalized vector equilibrium like problems without pseudomonotonicity in Banach spaces[J]. J Inequal Appl,2007,2007:1-13.
[7]  Chadli O, Yang X Q, Yao J C. On generalized vector pre-variational and pre-quasivariational inequalities[J]. J Math Anal Appl,2004,295:392-403.
[8]  Chen G Y, Goh C J, Yang X Q. Existence of a solution for generalized vector variational inequalities[J]. Optimization,2001,50:1-16.
[9]  Giannessi F. On Minty Variational Principle: In New Trends in Mathematical Programming[M]. Dordrecht:Kluwer Academic Publishers,1997.
[10]  Khan M F, Salahuddin. On generalized vector variational like inequalities[J]. Nonlinear Anal:TMA,2004, 59:879-889.
[11]  Konnov I V, Yao J C. Existence of solutions for generalized vector equilibrium problem[J]. J Math Anal Appl,1999,233:328-335.
[12]  Lee B S, Chang S S, Jung J S, et al. Generalized vector version of Minty’s lemma and applications[J]. Comput Math Appl,2003,45:647-653.
[13]  Lee B S, Lee G M. A vector version of Minty’s lemma and applications[J]. Appl Math Lett,1999,12:43-50.
[14]  Lee B S, Lee S J. Vector variational type inequality for setvalued mappings[J]. Appl Math Lett,2000,13:57-62.
[15]  Li J, Huang N J, Kim J K. On implicit vector equilibrium problem[J]. J Math Anal Appl,2003,283:501-512.
[16]  Lin K L, Yang X Q, Yao J C. Generalized vector variational inequalities[J]. J Optim Theory Appl,1997,92:117-125.
[17]  Siddiqi A H, Khan M F, Salahuddin. On vector variational like inequalities[J]. Far East J Math Sci Special,1998,3:319-329.
[18]  Zeng L C, Yao J C. An existence result for generalized vector equilibrium problem with pseudomonotonicity[J]. Appl Math Lett,2006,19:1320-1326.
[19]  Zeng L C, Yao J C. Generalized Minty’s lemma for generalized vector equilibrium problems[J]. Appl Math Lett,2007,20:32-37.
[20]  Nadler Jr S B. Multi-valued contraction mappings[J]. Pacific J Math,1969,30:475-488.
[21]  Fan K. A generalization of Tychonoff’s fixed point theorem[J]. Math Ann,1961,142:305-310.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133