全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类含变系数的高阶非线性Schrdinger方程的精确孤立子解

, PP. 378-382

Keywords: 孤立子解,变系数,非线性Schrdinger方程,双线性Hirota方法,Bcklund变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类含变系数的高阶非线性Schrdinger方程,使用双线性Hirota方法和符号运算系统Maple软件,得到了1-孤立子解、2-孤立子解和N-孤立子解.同时,推导了该方程的一个Bcklund变换,通过这个变换,也获得了一个孤立子解.

References

[1]  Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[J]. Phys Rev Lett,1980,45:1095-1098.
[2]  马云苓,耿献国. 两类(2+1)-维孤子方程的显式解[J]. 广西师范大学学报:自然科学版,2011,29(2):45-49.
[3]  尹正,秦亚. 广义BBM方程的紧和非紧结构[J]. 四川师范大学学报:自然科学版,2011,34(2):170-173.
[4]  刘倩,周钰谦. 二维Klein-Gordon-Zakharov方程新孤波解的构造[J]. 四川师范大学学报:自然科学版,2010,33(3):335-338.
[5]  蒋毅,蒲志林,孟宪良. 三维空间中Klein-Gordon-Zakharov方程的精确解[J]. 四川师范大学学报:自然科学版,2007,30(5):262-265.
[6]  傅海明,戴正德. Kadomtesv-Petviashvili方程的新解[J]. 四川师范大学学报:自然科学版,2011,34(1):77.
[7]  Lü X, Zhu H W, Meng X H, et al. Soliton solutions and a Bcklund transformation for a generalized nonlinear Schrdinger equation with variable coefficients from optical fiber communications[J]. J Math Anal Appl,2007,336:1305-1315.
[8]  Wazwaz A M. Reliable analysis for nonlinear Schrdinger equations with a cubic nonlinearity and a power law nonlinearity[J]. Math Comp Model,2006,43:178-184.
[9]  Chow K W, A class of doubly periodic wave for nonlinear evolution equation[J]. Wave Motion,2002,35:71-90.
[10]  Brugarino T, Sciacca M. Singullarity analysis and integrability for a HNLS equation governing pulse propagation in a generic fiber optics[J]. Opt Commun,2006,262:250-256.
[11]  Tian B, Gao Y T. Variable-coefficient higher-order nonlinear Schrdinger model in optical fibers: New transformation with burstons, brightons and symbolic computation[J]. Phys Lett,2006,A359:241-248.
[12]  Panoiu N C, Mihalache D, Mazilu D, et al. Soliton dynamics of symmetry-endowed two-soliton solutions of the nonlinear Schrdinger equation[J]. Chaos, Solitons & Fractals,2000,10:625-641.
[13]  Kruglov V I, Mechin D, Harvey J D. Self-similar solutions of the generalized Schrodinger equation with distributed coefficients[J]. Optics Express,2004,12:6198-6207.
[14]  Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrdinger equation model[J]. Phys Rev Lett,2000,85:4502-4505.
[15]  Hirota R. Exact solution of the KdV equation for multiple collisions of solitons[J]. Phys Rev Lett,1971,27:1192-1194.
[16]  周鑫,胡先权. 球谐环形振荡势薛定谔方程的精确解[J]. 重庆师范大学学报:自然科学版,2011,28(5):63-67.
[17]  Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation[J]. J Math Phys,1973,14:805-809.
[18]  Zhu H W, Tian B. Bcklund transformation in bilinear form for a higher-order nonlinear Schrdinger equation[J]. Nonlinear Anal,2008,69:3706-3714.
[19]  Hao R Y, Li L, Li Z H, et al. A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrdinger equation with variable coefficients[J]. Opt Commun,2004,236:79-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133