全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间中可数无限族连续伪压缩映象公共不动点的强收敛定理

, PP. 370-374

Keywords: 连续伪压缩映象,一致光滑Banach空间,严格凸Banach空间,正规对偶映象

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Banach空间中,关于可数无限族连续伪压缩映象公共不动点的问题,引入了一个隐迭代序列.并在适当的条件下,证明了一个强收敛定理.所得结果推广和改进了A.Rafig(NonlinearAnalTMA,2007,66(10)2230-2236.)和Y.H.Yao等(NonlinearAnalTMA,2007,673311-3317.)的主要结果.

References

[1]  Ishikawa S. Fixed point by a new iteration method[J]. Proc Am Math Soc,1974,4:147-150.
[2]  Chidume C E, Mutangadura S A. An example on the Mann iteration method for Lipschitz pseudocontractions[J]. Proc Am Math Soc,2001,129:2359-2363.
[3]  Rafig A. On Mann iteration in Hilbert spaces[J]. Nonlinear Anal:TMA,2007,66(10):2230-2236.
[4]  Yao Y H, Liou Y C, Chen R D. Strong convergence of an iterative algorithm for pseudocontractive mappings in Banach spaces[J]. Nonlinear Anal,2007,67:3311-3317.
[5]  Liu M, Chang S S, Zuo P. Shrinking projection method of common solutions for generalized equilibrium quasi--nonexpansive mapping and relatively nonexpansive mapping[J]. J Inequal Appl,2010,2010:101690.
[6]  Liu M, Chang S S, Zuo P. On a hybrid method for generalized mixed equilibrium problem and fixed point problem of a family of quasi--asymptotically nonexpansive mappings in Banach spaces[J]. Fixed Point Theory and Appl,2010,2010:157278.
[7]  Shimoji K, Takahashi W. Strong convergence to common fixed ponts of infinite nonexpansive mappings and applications[J]. Taiwanese J Math,2001,5:387-404.
[8]  刘敏. 无限族严格伪压缩映象的强收敛定理[J]. 纯粹数学与应用数学,2010,26(3):391-399.
[9]  刘敏. 广义平衡问题与无限族k-严格伪压缩映象的强收敛定理[J]. 四川师范大学学报:自然科学版,2011,34(1):63-70.
[10]  Chang S S, Joseph Lee H W, Chan C K. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization[J]. Nonlinear Anal:TMA,2009,70(9):3307-3319.
[11]  Xu H K. Viscosity approximation methods for nonexpansive mappings[J]. J Math Anal Appl,2004,298:279-291.
[12]  Reich S. An iterative procedure for constructing zero of accretive sets in Banach spaces[J]. Nonlinear Anal,1978,2:85-92.
[13]  Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces[J]. J Math Anal Appl,1980,75:287-292.
[14]  Xu H K. Iterative algorithms for nonlinear operators[J]. J London Math Soc,2002,66:240-256.
[15]  Liu M, Chang S S. A new iterative method for finding common solutions of generalized equilibrium problem and fixed point problem in Hilbert spaces[J]. J Math Res Exp,2010,30(6):1061-1070.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133