全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类含连续分布时滞的随机Hopfiled神经网络模型的几乎必然指数稳定性和p阶矩指数稳定性

, PP. 317-323

Keywords: 分布时滞,随机Hopfiled神经网络模型,非负半鞅收敛定理,几乎必然指数稳定,p阶矩指数稳定

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑一类含连续分布时滞的随机Hopfiled神经网络模型的几乎必然指数稳定性和p阶矩指数稳定性,借助创建Lyapunov函数和运用非负半鞅收敛定理得到了该网络模型平凡解几乎必然指数稳定和p阶矩指数稳定的充分条件,并通过2个例子,说明结果的有效性.

References

[1]  陈万义. 一类Hopfield 型时滞神经网络模型的全局渐近稳定性\[J\]. 生物数学学报,2004,19(2):175-179.
[2]  Huang H, Cao J. On global asymptotic stability of recurrent neural networks with time-varying delays\[J\]. Appl Math Comput,2003,142:143-154.
[3]  Tian J, Xie X. New asymptotic stability criteria for neural networks with time-varying delay\[J\]. Phys Lett,2010,374:938-943.
[4]  Steve B, Mao X, Liao X. Stability of stochastic delay neural networks\[J\]. J Franklin Institute,2001,338:481-495.
[5]  Zhou Q, Wan L. Exponential stability of stochastic delayed Hopfield neural networks\[J\]. Appl Math Comput,2008,199:84-89.
[6]  Blythe S, Mao X, Shah A. Razumikhin-type theorems on stability of stochastic neural networks with delays\[J\]. Stoch Anal Appl,2001,19(1):85-101.
[7]  钟守铭,刘碧森,王小梅,等. Hopfield神经网络稳定性理论\[M\]. 北京:科学出版社,2008.
[8]  Huang C X, Cao J D. Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays\[J\]. Neurocomputing,2009,72:3352-3356.
[9]  Yan L, Wei L, Jian H S. Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays\[J\]. Nonlinear Anal:RWA,2008,9:1590-1606.
[10]  Yong H S, Cai J D. pth moment exponential stability of stochastic recurrent neural networks with time-varying delays\[J\]. Nonlinear Anal:RWA,2007,8:1171-1185.
[11]  Fu X L, Li X D. LMI conditions for stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays\[J\]. Communications in Nonlinear Science and Numerical Simulation,2010,16(1):435-454.
[12]  Yu J J, Zhang K J. Exponential stability criteria for discrete-time recurrent neural networks with time-varying delay\[J\]. Nonlinear Anal:RWA,2010,11:207-216.
[13]  Huang C X, Chen P. Almost sure exponential stability of delayed Hopfield neural networks\[J\]. Appl Math Lett,2008,21:701-705.
[14]  Magdi S, Xia Y Q. Improved exponential stability analysis for delayed recurrent neural networks\[J\].J Franklin Institute,2011,348:201-211.
[15]  Meng X J, Tian M S, Hu S G. Stability analysis of stochastic recurrent neural networks with unbounded time-varying delays\[J\]. Neurocomputing,2011,74:949-953.
[16]  Li T, Song A G, Xue M X. Stability analysis on delayed neural networks based on an improved delay-partitioning approach\[J\]. J Comput Appl Math,2011,235:3086-3095.
[17]  Feng Y N, Xu S Y, Zou Y. Delay-dependent stability of neatral type neural networks with distributed delays\[J\]. Neurcomputing,2009,72:2576-2580.
[18]  Wan L, Sun J. Mean square exponential stability of stochastic delayed Hopfield neural networks\[J\]. Phys Lett,2005,343:306-318.
[19]  Guo Y. Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays\[J\]. Appl Math Comput,2009,215:791-795.
[20]  Ma L, Da F. Mean-square exponential stability of stochastic Hopfield neural networks with time-varying discrete and distributed delays\[J\]. Phys Lett,2009,373:2154-2161.
[21]  Li X, Fu X. Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks\[J\]. J Comput Appl Math,2010,234:407-417.
[22]  Wei F, Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay\[J\]. J Math Anal Appl,2007,331:516-531.
[23]  Lipster R, Shiryayev A. Theory of Martingales\[M\]. Dordrecht:Kluwer Academic Publishers,1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133