全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Prewitt算子的TV图像去噪算法

, PP. 456-462

Keywords: 图像去噪,TV算法,空间梯度,像素梯度,Prewitt

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析了传统TV算法抑噪不充分的原因,为了弥补其不足结合图像空间和像素梯度提出了一种改进算法.该算法首先运用Prewitt边缘检测算子分析图像空间梯度,并对空间梯度进行抑制,一定程度上克服了传统TV算法对平坦区抑噪不充分,甚至出现虚假边缘和阶梯效应的缺陷;再结合像素梯度分析了TV去噪的迭代函数完成保边去噪.与传统算法相比,该文算法残余噪声较小且边缘保护较好,提高了图像的PSNR和视觉效果.但对图像较小纹理误作为噪声而去除.

References

[1]  Juang L, Wu M. Image noise reduction using Wiener filtering with pseudo-inverse measurement[J]. J Inter Measure Confeder,2010,43:1649-1655.
[2]  Li L, Kong L F. Image denoising base on non-local means with Wiener filtering in wavelet domain[C]//2009 Fifth Inter Conf Intel Info Hid Multimedia Sign Proc,2009:471-474.
[3]  Al-amri S S, Kalyankar N V, Khamitkar S D A. Comparative study of removal noise from remote sensing image[J]. Inter J Comput Sci,2010,7(1):32-36.
[4]  Hajiabol M R. A self-governing fourth-order nonlinear diffusion filter for image noise removal[C]//IPSJ Trans Comput Vis Appl,2010,2:94-103.
[5]  Aboshosha A, Hassan M, Ashour M, et al. Image denoising based on spatial filters, an analytical study[C]//Proc 2009 Inter Conf Comput Engin Syst,2009,5:245-250.
[6]  Luo Q, Wang J, Luo L, et al. Research of image denoising based on edge preservation[C]//Inter Symp Intel Info Tech Appl Work,2008:447-450.
[7]  Russo F. New method for performance evaluation of grayscale image denoising filters[J]. IEEE Sign Proc Lett,2010,17(5):417-420.
[8]  State L, Sararu C, Cocianu C. New approaches in image compression and noise removal[C]//2009 First Inter Conf Adv Sate Space Commun,2009,3:96-101.
[9]  Wei H L, Billings S A, Zhao Y F. An adaptive wavelet neural network for spatio-temporal system identification[J]. Neural Networks,2010,10(23):1286-1299.
[10]  Yang C H, Olson B, Si J N. A multiscale correlation of wavelet coefficients approach to spike detection[J]. Neural Comput,2011,1(23):215-250.
[11]  Yu H C, Zhao L, Wang H X. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain[J]. IEEE Trans Image Proc,2009,18(10):2364-2369.
[12]  Dabov K, Foi A, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Trans Image Proc,2007,8(16):2080-2095.
[13]  Ji Z X, Chen Q, Sun Q S, et al. A moment-based nonlocal-means algorithm for image denoising[J]. Info Proc Lett,2009,109(4):1238-1244.
[14]  Hou Y K, Zhao C X, Yang D Y, et al. Comments on “Image denoising by sparse 3-D transform-domain collaborative filtering”[J]. IEEE Trans Image Proc,2011,20(1):268-270.
[15]  Wan C, Mita A. Pipeline monitoring using acoustic principal component analysis recognition with the mel scale[J]. Smart Materials and Structures,2009,18(9):55-64.
[16]  Shyjila P A, Wilscy M. Nonlocal means image denoising for color images using PCA[C]//Adv Comput Sci Info Tech, Commun Comput Info Sci,2011,131(2):288-297.
[17]  Chen G, Qian S. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage[J]. IEEE Trans Geosci Remote Sensing,2011,49(3):973-980.
[18]  Aubert G, Kornprobst P. Mathematical problem in image processing: Partial differential equations and the calculus of variations[M]. New York:Springer Science Business Media,2009.
[19]  Liu X W, Huang L H, Guo Z Y. Adaptive fourth-order partial differential equation filter for image denoising[J]. Appl Math Lett,2011,24(8):1282-1288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133