全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

控制随机利率下年金的现值

, PP. 383-387

Keywords: 几何Brownian运动,Brownian运动,,年金,随机利率

Full-Text   Cite this paper   Add to My Lib

Abstract:

在随机利率为反射Brownian运动和Brownian运动交替更新的假设下,在最低利率水平a、中间利率水平b和最高利率水平c调整基准利率和年金届期日为随机变量的条件下,借助于鞅方法和相关结论,研究了基准利率不断调控的随机利率下的年金,得到了控制随机利率下的年金现值.

References

[1]  Milevsky M A. The present value of a stochastic perpetuity and the Gamma distribution[J]. Insurance:Mathematics and Ecomomics,1997,20(1):243-250.
[2]  Milevsky M A. Martingales,scale functions and stochastic life annuities:A note[J]. Insurance:Mathematics and Ecomomics,1999,24(3):149-154.
[3]  Vanneste M, Goovaerts M J, De Schepper A, et al. A straightforward analytical calculation of the distribution of an annuity certain with stochastic interest rate[J]. Insurance:Mathematics and Ecomomics,1997,20(2):35-41.
[4]  颜荣芳,乔锐智,付桐林. 变额年金的最优控制[J]. 经济数学,2007,24(4):351-357.
[5]  Kaas R, Dhaene J, Goovaerts M J. Upper and lower bounds for sums of variables[J]. Insurance:Mathematics and Ecomomics,2000,27(2):151-168.
[6]  De Schepper A, Goovaerts M J, Dhaene J, et al. Bounds for present value functions with stochastic interest rates and stochastic volatility[J]. Insurance:Mathematics and Ecomomics,2002,31(1):87-103.
[7]  Dhaene J, Denuit M, Goovaerts M, et al. The concept of comonotonicity in actuarial science and finance:Theory[J]. Insurance:Mathematics and Ecomomics,2002,31(1):3-33.
[8]  Dhaene J, Denuit M, Goovaerts M, et al. The concept of comonotonicity in actuarial science and finance:Applications[J]. Insurance:Mathematics and Ecomomics,2002,31(2):133-161.
[9]  吕王勇,高仕龙,马洪. 广义Copula的存在理论[J]. 四川师范大学学报:自然科学版,2010,33(2):159-161.
[10]  Tang Q, Vernic R. Asymptotics for risk capital allocations based on conditional tail expectation[J]. Insurance:Mathematics and Ecomomics,2011,49(3):310-324.
[11]  Nam H S, Tang Q, Yang F. Characterization of upper comonotonicity via tail convex order[J]. Insurance:Mathematics and Ecomomics,2011,48(3):368-373.
[12]  付桐林,潘欢. 尾分布族L、D的一些性质及其应用[J]. 兰州理工大学学报:自然科学版,2010,36(3):162-165.
[13]  Hashorva E, Pakes A G, Tang Q. Asymptotics of random contractions[J]. Insurance:Mathematics and Ecomomics,2010,47(3):405-414.
[14]  Tang Q, Wang G, Yuen K C. Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model[J]. Insurance:Mathematics and Ecomomics,2010,46(2):362-370.
[15]  Perry D, Stadje W. Function space integration for annuities[J]. Insurance:Mathematics and Ecomomics,2001,29(1):73-82.
[16]  Perry D, Stadje W, Yosef R. Annuities with controlled random interests[J]. Insurance:Mathematics and Ecomomics,2003,32(2):245-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133