全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具Sobolev临界增涨的椭圆型偏微分方程解的存在性

, PP. 375-377

Keywords: 半线性椭圆方程,Sobolev临界指数,Dirichlet问题,特征值,极小值原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

具临界指数的椭圆型非线性偏微分方程通常与热力学中气体燃烧理论,几何中的Yamabe问题,物理量子场论和统计力学等相关.利用空间H10(Ω)的正交分解和极小值原理给出了一类具Sobolev临界指数的椭圆方程-Δu=λ1u+g(x,u)+h(x)解的存在性定理,其中,g(x,u)是临界增长项,λ1为算子-Δ在H10(Ω)中最小特征值.由于避开了常用而复杂的集中紧性原理,因而所用方法和所得结论都有一定的新颖性.

References

[1]  Li T X, Wu T F. Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent[J]. J Math Anal Appl,2010,369(1):245-257.
[2]  Deng Z Y, Huang Y S. On G-symmetric solutions of a quasilinear elliptic equation involving critical Hardy-Sobolev exponent[J]. J Math Anal Appl,2011,384(2):578-590.
[3]  Liu H D. Multiple positive solutions for a semilinear elliptic equation with critical Sobolev exponent[J]. J Math Anal Appl,2009,354(2):451-458.
[4]  Xuan B J, Wang J C. Extremal functions and best constants to an inequality involving Hardy potential and critical Sobolev exponent[J]. Nonlinear Anal:TMA,2009,71(3/4):845-859.
[5]  Ikehata R, Ishiwata M, Suzuki T S. Semilinear parabolic equation in RN associated with critical Sobolev exponent[J]. Annales de l’Institut Henri Poincare:Non-linear Anal,2010,27(3):877-900.
[6]  Shang Y Y, Tang C L. Positive solutions for Neumann elliptic problems involving critical Hardy-Sobolev exponent with boundary singularities[J]. Nonlinear Anal:TMA,2009,70(3):1302-1320.
[7]  陆文端. 微分方程中的变分方法[M]. 成都:四川大学出版社,1995.
[8]  徐昌进,陈大学. 具有时滞的食饵-捕食者模型的分支问题[J]. 重庆师范大学学报:自然科学版,2011,28(3):43-48.
[9]  曾云辉. 具非线性扩散系数的偏微分方程组解的振动性[J]. 重庆师范大学学报:自然科学版,2010,27(3):44-47.
[10]  韦煜明,王勇,唐艳秋,等. 具p-Laplacian算子时滞微分方程边值问题解的存在唯一性[J]. 广西师范大学学报:自然科学版,2012,30(2):48-53.
[11]  赵慧炜,李文华,冯春华,等. 一类时滞递归神经网络模型的周期振动性[J]. 广西师范大学学报:自然科学版,2011,29(1):29-34.
[12]  Bae S, Hadiji R, Vigneron F, et al. A non-linear problem involving a critical Sobolev exponent[J]. J Math Anal Appl,2012,396(1):98-107.
[13]  Zhang Y J. Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent[J]. Nonlinear Anal:TMA,2012,75(4):2047-2059.
[14]  Lin H L. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent[J]. Nonlinear Anal:TMA,2012,75(4):2660-2671.
[15]  Lu D F. Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent[J]. Nonlinear Anal:TMA,2011,74(17):6371-6382.
[16]  Wu T F. Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight[J]. J Diff Eqns,2010,249(7):1549-1578.
[17]  Liu S Q, Tang C L. Existence and multiplicity of solutions for a class of semilinear elliptic equations[J]. J Math Anal Appl,2001,257:321-331.
[18]  Tang C L, Gao Q J. Elliptic Resonant Problems at Higher Eigenvalues with an Unbounded Nonlinear Term[M]. New York:Academic Press,1998:22-396.
[19]  朱熹平. 临界增长拟线性 椭圆型方程的非平凡解[J]. 中国科学,1988,A3:225-237.
[20]  Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. New York:Springer-Verlag,1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133