全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类偏微分方程的解半群在L2(I)的非游荡性

, PP. 356-361

Keywords: 非游荡半群,超循环半群,混沌半群,偏微分方程算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

在非游荡算子半群的定义的基础上,给出了非游荡算子半群的性质,从不同角度归纳给出了判定算子半群为非游荡半群的标准,接着在L2(I)空间上考虑偏微分方程ut=γux+h(x)u的解半群,给出了解半群成为非游荡算子半群的一个充分条件,进一步拓宽了非游荡算子半群的研究.

References

[1]  Desch W, Schappacher W, Webb G F. Hypercyclic and chaotic semigroup of linear operators\[J\]. Ergod Theory Dyn Sys,1997,17:793-819.
[2]  张蕾. Hardy空间上的非游荡复合算子\[J\]. 山东大学学报:自然科学版,2009,3(3):81-83.
[3]  Qian H. Recurrent set and stability of non-wandering operator\[J\]. Inter J Nonl Sci,2009,7(1):108-112.
[4]  Tian L X, Shi S G, Ren L H. The invariance of nonwandering operator under small pertur-bation\[J\]. Inter J Nonl Sci,2008,6(2):28.
[5]  Qian H, Zhang J M. Products of recurrent non-wandering semigroups\[J\]. Inter J Nonl Sci,2009,8(2):218-222.
[6]  Li Y Q, Tian L X, Wu Y H. On the bifurcation of traveling wave solution of generalized Camassa-Holm equation\[J\]. Inter J Nonl Sci,2008,6(1):34-45.
[7]  Tian L X, Shen C Y. Optimal control of the b-family equation\[J\]. Inter J Nonl Sci,2007,4(1):3-9.
[8]  Chen W X, Tian L X, Deng X Y. The global attractor and numerical simulation of a forced weakly damped MKdV equation\[J\]. Nonlinear Anal:RWA,2009,10( 3):1822-1837.
[9]  Godefroy G, Shapiro J H. Operators with dense, invariant cyclic vector manifolds\[J\]. J Funct Anal,1991,98:229-269.
[10]  Tian L X, Lu D C. The property of nonwandering operator\[J\]. Appl Math Mech:English,1996,17(2):155-161.
[11]  Tian L X, Zhou J B, Liu X, et al. Non-wandering operators in Banach space\[J\]. Inter J Math Math Sci,2005,24:3895-3908.
[12]  Tian L X, Wang M G. Pseudo orbit tracing property of non-wandering operator\[J\]. Inter J Nonl Sci,2007,3(1):3-7.
[13]  Wang M G. Non-wandering property of differentiation operator\[J\]. Inter J Nonl Sci,2008,8(2):21-27.
[14]  Wang M G, Xu H. Non-wandering operator in Bargmann space\[J\]. J Math Research,2010(5):34-38.
[15]  王明刚,许华. 非游荡算子的拓扑稳定性\[J\]. 山东大学学报:理学版,2011,46(11):81-88.
[16]  王明刚,许华. 非游荡算子的伪轨跟踪性质的推广及应用\[J\]. 四川师范大学学报:自然科学版,2011,34(5):640-645.
[17]  周江波,卢殿臣,田立新. Fréchet空间上的非游荡算子的遗传超循环分解\[J\]. 江苏理工大学学报:自然科学版,2001,22(6):88 - 91.
[18]  刘恂,田立新. 非游荡半群及其性质\[J\]. 江苏大学学报:自然科学版,2002,23(5):9-12.
[19]  Tian L X, Ren L H. N-multiple non-wandering unilateral weighted backward shift operators and the property of direct sum operators in Banach space\[J\]. Inter J Nonl Sci,2006,2(2):104-110.
[20]  MacCluer C R. Chaos in linear distributed systems\[J\]. J Dyn Sys Measure Control,1992,114:322-324.
[21]  Tian L X, Shen C Y, Ding D P. Optimal control of the viscous Camassa-Holm equation\[J\]. Nonlinear Anal:RWA,2009,10(1):519-530.
[22]  Tian Li X, Shi Q, Liu Y. Boundary control of viscosity Degasperis-Procesi equation\[J\]. Nonlinear Anal:TMA,2009,71(1/2):382-390.
[23]  Ding Z W, Tian L X, Yang H L. Uilibrium path in oligopolistic market of nonrenewable resource\[J\]. Nonlinear Anal:RWA,2008,9(5):1918-1927.
[24]  Tian L X, Yin J L. Multi-compacton and double symmetric peakon for generalized Ostrovsky equation\[J\]. Chaos, Solitons Fractals,2008,35(5):991-995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133