全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义Sobolev空间Wr2(T)在Sq(T)尺度下的 概率与平均Kolmogorov宽度问题

Keywords: 概率宽度,平均宽度,高斯测度,广义Sobolev空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

考察了Sobolev空间中的函数在Sq(T)尺度下的逼近特征,研究了赋有高斯测度的广义Sobolev空间Wr2(T)在Sq(T)(1≤q≤∞)尺度下的概率与平均框架下的宽度问题,并得到了概率与平均Kolmogorov宽度的精确阶.

References

[1]  Pinkus A. n-widths in Approximation Theory[M]. Berlin:Springer-Verlag,1985:1-150.
[2]  Temlyakov V N. Approximation of functions with bounded mixed derivative[J]. Tr Mat Inst Akad Nauk SSSR,1986,178:1-112.
[3]  Traub J F, Wasilkowski G W, Wozniakowski H. Infirmation Based Complexity[M]. New York:Academic Press,1988:55-70.
[4]  Traub J F, Wozniakowski H. A General Theory of Optimal Algorithms[M]. New York:Academic Press,1980:5-80.
[5]  Maivorov V E. Widths of spaces, endowed with a Gaussian measure[J]. Russion Acad Sci Dokl Math,1992,45:305-309.
[6]  Maivorov V E. Kolmogorov’s (n,δ)-widths of the spaces of the smooth functions[J]. Russion Acad Sci Sb Math,1994,79:265-279.
[7]  Maivorov V E. Linear widths of functions spaces equipped with the Gaussian measure[J]. J Approx Theory,1994,77:74-88.
[8]  Maivorov V E, Wasilkowski G W. Probabilistic and average linear widths in L∞-norm with respect to r-fold Wiener measure[J]. J Approx Theory,1996,84:31-40.
[9]  Ritter K. Average Case Analysis of Numerical Problems, Lecture Notes in Maths[M]. Berlin:Springer-Verlag,2000:1733.
[10]  Sun Y S. Average n-width of point set in Hilbert space[J]. Chinese Sci Bull,1992,37:1153-1157.
[11]  Sun Y S, Wang C Y. μ-average widths on the Wiener space[J]. J Complexity,1994,10:428-436.
[12]  Sun Y S, Wang C Y. Average error bounds of best approximation of continuons functions on the Wiener space[J]. J Complexity,1995,11:74-104.
[13]  Kuo H H. Gaussian Measure in Banach Space in Lecture Notes in Mathematics[M]. Berlin:Springer-Verlag,1975:463.
[14]  Ledoux M, Talagrand M. Probability in Banach Space[M]. Berlin:Springer-Verlag,1991:23.
[15]  陈广贵,蔡斌畏. 无限维空间在概率框架和平均框架下的逼近特征[J]. 西华大学学报:自然科学版,2011,30(5):25-28.
[16]  张健,舒级. 低维空间中带调和势的非线性Schrdinger方程[J]. 四川师范大学学报:自然科学版,2002,25(3):226-228.
[17]  张亚兰,陈广贵,罗新建. 多重调和基样条对多元带有限函数的恢复[J]. 四川师范大学学报:自然科学版,2010,2:176-178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133