全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用新的Lyapunov泛函处理带有离散时滞和 分布时滞的神经网络的被动性

Keywords: 神经网络,线性矩阵不等式(LMI),被动性,Lyapunov泛函

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究带有离散时滞和分布时滞的神经网络的被动性,通过构造新的Lyapunov泛函,建立了判定系统是被动的新标准.采用Lyapunov稳定理论、线性矩阵不等式及自由权矩阵等方法,通过实例很好地说明了所研究的结论是正确有效的,且在一定程度上降低了保守性.

References

[1]  Shao H. New delay-dependent stability criteria for systems with interval delay\[J\]. Automatica,2009,45:744-749.
[2]  Xu X, Lam J, Ho D W C. Novel global robust stability criteria for interval neural networks with multiple time-varying delays\[J\]. Phys Lett,2005,A342:322-330.
[3]  Cao J, Yuan K, Li H X. Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays\[J\]. IEEE Trans Neural Networks,2006,17:1646-1651.
[4]  Liu X, Zhong S. T-S fuzzy model-based impulsive control of chaotic systems with exponential decay rate\[J\]. Phys Lett,2007,A370(3/4):260-264.
[5]  Liu X. Delay-dependent H control for uncertain fuzzy systems with time-varying delays\[J\]. Nonlinear Anal:TMA,2008,68(5):1352-1361.
[6]  Liu X, Yu W, Wang L. Necessary and sufficient asymptotic stability criterion for 2-D positive systems with time-varying state delays described by Roesser model\[J\]. IET Cont Theory Appl,2011,5(5):663-668.
[7]  陈光淦,蒲志林,张健. 变时滞Hopfield神经网络模型的全局指数稳定性和全局吸引性\[J\]. 工程数学学报,2005,22(5):821-826.
[8]  龙述君,向丽. 一类具有分布时滞的Hopfield神经网络的稳定性\[J\]. 四川师范大学学报:自然科学版,2006,29(5):566-569.
[9]  赵亮, 李树勇. 含时滞和脉冲的双向联想记忆的神经网络模型的全局鲁棒一致渐近稳定性分析\[J\]. 四川师范大学学报:自然科学版, 2013,36(2):177-124.
[10]  Kwon O M, Park J H. New delay-dependent robust stability criterion for uncertain neural networks with time-varying delays\[J\]. Appl Math Comput,2008,205:417-427.
[11]  Li H Y, Lam J, Cheung K C. Passivity criteria for continuous time neural networks with mixed time-varying delays\[J\]. Appl Math Comput,2012,218:11062-11074.
[12]  Xu S, Zheng W, Zou Y. Passivity analysis of neural networks with time-varying delays\[J\]. IEEE Transcations on Circuits and Systems II,2009,56(4):325-329.
[13]  Zhang Z, Mou S, Lam J, et al. New passivity criteria for neural networks with time-varying delay\[J\]. Neural Networks,2009,22(7):864-868.
[14]  Park M J, Kwon O M, Park J H, et al. A new augmented Lyapunov-Krasovskii Functional approach for stability of linear systems with time-varying delays\[J\]. Appl Math Comput,2011,217:7197-7209.
[15]  Kwon O M, Park J H. Exponential stability for uncertain cellular neural networks with discrete and distributed time-varying delays\[J\]. Appl Math Comput,2008,A203:813-823.
[16]  Park J H. Further results on passivity analysis of delayed cellular neural networks\[J\]. Chaos, Solitons & Fractals,2007,34:1546-1551.
[17]  Kwon O M, Park J H. A new augmented Lyapunov-Krasovskii functional approach to exponential passivity for neural networks with time-varying delays\[J\]. Appl Math Comput,2011,217:10231-10238.
[18]  Zhu S, Shen Y, Chen C. Exponential passivity of neural networks with time-varying delay and uncertainty\[J\]. Phys Lett,2010,A375:136-142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133