套子代数上的零点可导映射
Keywords: 零点可导,vonNeumann代数,套子代数
Abstract:
设β是因子vonNeumann代数M中的任意一个套,algMβ是相应的套子代数,φalgMβ→M是一个线性映射.主要证明了如果φ在零点可导,那么存在导子δalgMβ→M和λ∈C,使得对任意的A∈algMβ有φ(A)=δ(A)+λA.
References
[1] | Zhang Jianˉhua,JiGuoˉxing,CaoHuaiˉxin.Local derivations of nest subalgebras of von Neumann algebras[J].LinearAlgebra Appl,2004,392:61ˉ69.
|
[2] | Dixmier J.Von Neumann Algebras[M].Amsterdam,NewYork,Oxford:NorthˉHolland Publishing Company,1981.
|
[3] | Kadison R V,Ringrose JR.Fundamentals of the Theory ofOperatorAlgebras[M].San Diego:Academic Press,1986.
|
[4] | 侯晋川,崔建莲.算子代数上的线性映射引论[M].北京:科学出版社,2002:1ˉ15.
|
[5] | Larson D R,SourourA R.Local derivations and local automorphisms ofB(X)[J].Proceedings Symposia in PureMathematics,1990,51:187ˉ194.
|
[6] | Kadison R V.Local derivations[J].JAlgebra,1990,130:494ˉ509.
|
[7] | Semrl P.Local automorphisms and derivationon B(H)[J].ProcMath Soc,1997,125:2677ˉ2680.
|
[8] | Zhu Jun,XiongChangˉping.Generalized derivablemappings at zero pointon some reflexive operator algebras[J].LinearAlgebra Appl,2005,397:367ˉ379.
|
[9] | 朱军,熊昌萍.Nest代数上的在零点广义可导的映射[J].数学学报,2002,45(4):783ˉ788.
|
[10] | Davidson K R.NestAlgebras[M].London,New York:Longman Scientific and Technical Publishing Company,1988.
|
Full-Text