一类脉冲延滞微分方程正周期解存在的充分条件
Keywords: Brouwer不动点定理,延滞,非延滞,脉冲微分方程,周期解
Abstract:
运用Brouwer不动点定理,讨论得到了脉冲微分方程x′(t)=-α(t)x(t)+β(t)f(γ(t)x(t-mω)),t>0,t≠tk,x(t+k)-x(tk)=bkx(tk),k=1,2,…,在延滞和非延滞情形下正周期解存在的充分条件.
References
[1] | 宿娟,李树勇.一类含时滞的非线性抛物型方程组的周期解[J].四川师范大学学报:自然科学版,2005,28(6):650ˉ654.
|
[2] | 王长有.含时滞的抛物型方程组周期解的存在性[J].四川师范大学学报:自然科学版,2007,30(2):204ˉ207.
|
[3] | Liu X N,TakeuchiY.Periodicity and global dynamics of impulsive delayLasotaˉW azewskamodel[J].JMathAnalAppl,2007,327(1):326ˉ341.
|
[4] | Bainov D D,Simeonov P S.Systems with Impulse Effect[M].Chichester:EllisHorwood,1989.
|
[5] | Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive DifferentialEquations[M].Singerpore:World Scientific,1989.
|
[6] | 杨志春.Volterra型脉冲积分微分方程解的存在性和稳定性[J].重庆师范大学学报:自然科学版,2008,25(1):1ˉ4.
|
[7] | Zhang X S,Yan JY.Global attractivity in impulsive functional equation[J].Indian J Pure ApplMath,1998,9:871ˉ878.
|
[8] | LiW T,HuoH F.Existence and global attractivity of positive periodic solution of functional differential equation[J].Nonlinear Anal,2004,59(6):857ˉ877.
|
[9] | Yan J R.Existence and global attactivity of positive periodic solution for an impulsive LasotaˉW azewska model[J].JMath Anal Appl,2003,279:111ˉ120.
|
[10] | Zhang B G,Liu Y J.Global attractivity in impulsive functional differential equation[J].NonlinearAnal,1999,35:1019ˉ1030.
|
[11] | SmithH L.Cooperative systems of differential equationswith concave nonlinearities[J].NonlinearAnalysis,1986,10:1037ˉ1052.
|
Full-Text