全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

qˉ一致光滑Banach空间含(A,η)ˉ增生算子的广义集值变分包含组

Keywords: (A,η)ˉ增生算子,预解算子,广义集值变分包含组,迭代算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在qˉ一致光滑Banach空间,引入和研究了一类新的含(A,η)ˉ增生算子的广义集值变分包含组问题.利用(A,η)ˉ增生算子生成的预解算子,给出了一类广义集值变分包含组问题的迭代算法,并证明了该迭代算法的收敛性,改进和推广了近期文献中的相应结果.

References

[1]  ZhangQ B.Generalized implicitvariationalˉlike inclusion problems involvingGˉηˉmonotonemappings[J].ApplMath Lett,2007,20(2):216ˉ221.
[2]  Xu H K.Inequalities in Banach spaces with applications[J].NonlinearAnal,1991,16(12):1127ˉ1138.
[3]  Chidume C E,KazmiK R,ZegeyeH.Iterative approximation of a solution of a general variationalˉlike inclusion in Banach spaces [J].Int JMathMath Sci,2004,22:1159ˉ1168.
[4]  Peng JW.Setˉvalued variational inclusionswith Tˉaccretive operators in Banach spaces[J].JComputApplMath,2006,19(3):271ˉ282.
[5]  KazmiK P,Khan F A.Iterative approximation of a unique solution of a system of variationalˉlike inclusions in real qˉuniformly smooth Banach spaces[J].NonlinearAnal,2007,67(3):917ˉ929.
[6]  FangY P,HuangN J,Thompson H B.A new system of variational inclusionswith(H,η)ˉmonotone operators in H ilbert spaces [J].ComputMath Appl,2005,49(2/3):365ˉ374.
[7]  邓方平,丁协平.Hˉ单调算子与广义集值变分包含组[J].四川师范大学学报:自然科学版,2005,28(2):149ˉ153.
[8]  张清邦.广义集值变分包含的迭代算法[J].四川师范大学学报:自然科学版,2004,27(5):467ˉ470.
[9]  周彦,杜艳梅,邓磊.广义mˉ增生映象似变分包含问题[J].西南师范大学学报:自然科学版,2006,31(4):19ˉ19.
[10]  张旭,叶志强.Banach空间中一类含Hˉ增生算子的新型广义非线性混合似变分包含组[J].重庆师范大学学报:自然科学版,2006,23(4):6ˉ9.
[11]  王亚琴.Banach空间中一类新的完全广义拟似变分包含[J].上海师范大学学报:自然科学版,2006,35(3):6ˉ11.
[12]  Verma R U.Generalized nonlinear variational inclusion problems involving amonotone mappings[J].ApplMath Lett,2006,19(9):960ˉ963.
[13]  Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusions involving(A,η)ˉaccretive mappings in Baˉnach spaces[J].ComputMath Appl,2006,51(9/10):1529ˉ1538.
[14]  Lan H Y.(A,η)ˉaccretive mappings and setˉvalued variational inclusions with relaxed cocoercive mappings in Banach spaces [J].ApplMath Lett,2007,20(3):571ˉ577.
[15]  Nadler S B.Multivalued contraction mapping[J].Pacific JMath,1969,30(3):457ˉ488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133