带势的非线性Schr¨odinger方程的爆破性质
Keywords: 非线性Schr¨odinger方程 ,势 ,爆破
Abstract:
讨论了带势的非线性Schr¨odinger方程it=-Δ+V(x)-||p-1,其中t≥0,x∈RN.运用能量方法,得到了一个较为简单的判别条件,当初值满足该条件时,Cauchy问题的解在有限时间爆破.
References
[1] ZakharovV E.Collapse ofLangmuirwaves[J].Sov Phys JETP,1972,35:909ˉ912.
[2] Ginibre J,Velo G.On a class of nonlinear Schr¨odinger equations[J].J FunctAnal,1979,32:1ˉ71.
[3] Glassey R T.On the blowing up of solutions to the Cauchy problem for nonlinear Schr¨odinger equations[J].JMath Phys,1977,18(9):1794ˉ1797.
[4] W einsteinM I.Nonlinear Schr¨odinger equation and sharp interpolation estimates[J].CommunMath Phys,1983,87:567ˉ576.
[5] Carles R.Nonlinear Schr¨odinger equationswith replusive harmonic potential and applications[J].SIAM JMath Anal,2003,35:823ˉ843.
[6] Bradley C C,SackettC A,HuletR G.BoseˉEinstein condensation of lithium:observation of limited condensate number[J].Phys Rev Lett,1997,78:985ˉ989.
[7] Chiao R Y,Garmine E,Townes C H.Selfˉtrapping of optical beam[J].Phys Rev Lett,1964,13:479ˉ482.
[8] Zhang J.Sharp conditions of global existence for nonlinear Schr¨odinger and KleinˉGordon equations[J].NonlinearAnalTM A,2002,48:191ˉ207.
[9] Oh Y G.Cauchy problem and Ehrenfest’s law of nonlinear Schr¨odinger equationswith potential[J].CommunMath Phys,1989,121:11ˉ33.
[10] Cazenave T.Semilinear Schr¨odinger Equations[A]//Courant Lecture Notes in Mathmatics.New York:American Mathematical Society,2003.
[11] 李晓光,张健,陈光淦.带调和势的非线性Schr¨odinger方程爆破解的L 2 ˉ集中性质[J].数学年刊A辑,2005,9(1):31ˉ38.
[12] 李晓光,张健.带调和势的非线性Schr¨odinger方程爆破解的L 2 ˉ集中率[J].数学学报,2006,26(4):909ˉ914.
[13] 舒级,张健.一类带调和势的非线性Schr¨odinger方程解的爆破性质[J].四川师范大学学报:自然科学版,2002,25(1):32ˉ35.
[14] 舒级,张健.一类带调和势的非线性Schr¨odinger方程[J].四川师范大学学报:自然科学版,2002,25(2):129ˉ131.
[15] 舒级,张健.低维空间中带调和势的非线性Schr¨odinger方程[J].四川师范大学学报:自然科学版,2002,25(3):226ˉ228.
[16] Zhang Jian.Sharp threshold for blowup and global existence in nonlinear Schr¨odinger equations under a harmonic potential[J].Commun PartialDiffEq,2005,30:1429ˉ1443.
Full-Text