全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乘积局部FCˉ一致空间内的聚合不动点定理和应用

Keywords: 紧闭集值映象,聚合不动点,具有下和上界的拟平衡问题组,极小极大定理,局部FCˉ一致空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用在局部FCˉ一致空间内对紧闭集值映象得到的一个Himmelberg型不动点定理,对定义在局部FCˉ一致空间的乘积空间上的紧闭集值映象族建立了新的聚合不动点定理.作为应用,在局部FCˉ一致空间内对具有下和上界的拟平衡问题组得到了解的存在性定理和得到了新的极小极大定理.这些结果推广了文献中的某些已知结果.

References

[1]  H immelberg C J.Fixed points of compactmultifunctions[J].JMath AnalAppl,1972,38:205ˉ207.
[2]TarafdarE.Fixed point theorems in locallyHˉconvex uniform spaces[J].NonlinearAnal,1977,29:971ˉ978.
[3] Park S.Fixed point theorems in locally Gˉconvex spaces[J].NonlinearAnal,2002,48:869ˉ879.
[4]DingX P.Generalized game and system ofgeneralized vector quasiˉequilibrium problems in locally FCˉuniform spaces[EB/OL].NonlinearAnal,2006,doi:10.1016/j.na.2006.12.003.
[5] BenˉElˉMechaiekhH,Chebbi S,FlornzanoM,et al.Abstract convexity and fixed points[J].JMath AnalAppl,1998,222:138ˉ150.
[6]Ding X P.Maximal element theorems in productFCˉspaces and generalized games[J].JMath AnalAppl,2005,305:29ˉ42.
[7]Horvath C.Contractibility and general convexity[J].JMath AnalAppl,1991,156:341ˉ357.
[8]Dugundji J.Topology[M].Boston:Allyn and Bacon Inc,1966.
[9]DingX P.Himmelberg type fixed point theorem in locally FCˉspaces[J].J SichuanNormalUniv:Natural Science,2005,28(2):127ˉ130.(丁协平.局部FCˉ空间内的H immelberg型不动点定理(英).四川师范大学学报:自然科学版,2005,28(2):127ˉ130.) [10]Ding X P.Generalizations ofH immelberg type fixed point theorems in locally FCˉspaces[J].J Sichuan NormalUniv:Natural Science,2006,29(1):1ˉ6.
(丁协平.局部FCˉ空间内的H immelberg型不动点定理的推广(英).四川师范大学学报:自然科学版,2006,29(1):1ˉ6.)
[11] Fan Ky.Fixedˉpoints andminimax theorem
[2]  s in locally convex topological linear spaces[J].ProcNatAcad SciUSA,1952,38:131ˉ136.
Yuan G X Z.KKM Theory and Applications in nlinearAnalysis[M].New York:MarcelDekker Inc,1999.
[13]Aubin J P,Ekeland I.Applied NonlinearAnalysis[M].New York:W iley,1984.
[14]AlˉHomidan S,AnsariQ H.Systems of quasiˉequilibrium problemswith lower and upper bounds[J].ApplMath Lett,2007,20(3):323ˉ328.
[15] Isac G,SehgalV M,Singh S P.An Alternate version of a variational inequality[J].Indian JMath,1999,41(1):25ˉ31.
[16] Li J.A lower and upper bounds of a variational inequality[J].ApplMath Lett,2000,13(5):47ˉ51.
[17] ChadliO,ChiangY,Yao J C.Equilibrium problems with lower and upper bounds[J].ApplMath Lett,2002,15:327ˉ331.[18]Ding X P.Equilibrium problemswith lower and upper bounds in topological spaces[J].ActaMath Scientia,2005,25(4):658ˉ662.[19]Kuo T Y,Jeng J C,HuangY Y.Fixed point theorems for compactmultimaps on almostΓˉconvex sets in generalized convex spaces[J].Nonlinear Anal,2007,66(2):415ˉ426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133