[1] 宿娟,李树勇,韩天勇. 一类含扩散与时滞的竞争型LotkaVolterra系统的周期解[J]. 四川师范大学学报:自然科学版,2007,30(4):458462.[2] 杨程,李树勇. 一类含时滞和扩散LotkaVolterra竞争模型的持久性与吸引性[J]. 四川师范大学学报:自然科学版,2008,31(3):268272.[3] 韦煜明,曾琬婷,丁昌明. 一类被开发的捕食—食饵系统的定性分析[J]. 广西师范大学学报:自然科学版,2006,24(3):3033.[4] Peng R, Wang M X. Positive steady states of the HollingTanner preypredator model with diffusion[J]. Proceedings of the Royal Society of Edinburgh,2005,135A:149164.[5] Lin C S, Ni W M, Takagi I. Large amplitude stationdary solutions to a chemotaxis system[J]. J Differential Equations,1998,72:127.[6] Peng R, Wang M X. Global stability of the equilibrium of a diffusive HollingTanner preypredator model[J]. Applied Mathematics Letters,2007,20:664670.[7] Pang Peter Y H, Wang M X. Nonconstant positive steady states of a predatorprey system with nonmonotonic functional response and diffusion[J]. Proceedings of London Mathematical Society,2004,88(3):135157.[8] Peng R, Wang M X. Stationary patterns of the HollingTanner preypredator model with diffusion and crossdiffusion[J]. Applied Mathematics and Computation,2008,196:570577.