全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类二次可逆系统Abel积分零点个数的线性估计

Keywords: 二次可逆系统,Abel积分,线性估计,零点,代数构造

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类二次可逆系统当a=-4/3\,b=2时,在n次扰动下Able积分I(h)零点个数的上界.首先,研究了I(h)的代数构造,证明了I(h)可表示为4个生成元的线性组合,最后利用Riccti方程证明得到Abel积分I(h)的零点个数小于15n-11.

References

[1]  Gavrilov L. Remark on the number of eritical points of period\[J\]. J Diff Eqs,1993,101:5865.
[2]  Zhao Y L, Zhang Z F. Linear estimate of the number of zeros of abelian integrals for a kind of quartic hamiltonians\[J\]. J Diff Eqns,1999,155:7388.
[3]  Li C Z, Li W G, Libre J, et al. Ableian integrals fon quadratic centres having almost all their orbits formed by quartics\[J\]. Nonlinearity,2002,15(3):863885.
[4]  Zhao Y L. Zeros of abelian integrals for the reversible codimension four quadratic centers\[J\]. Israel J Mathematics,2003,136:125143.
[5]  Iliev I D. Perturbations of quadratic centers\[J\]. Bull Sci Math,1998,122:107161.
[6]  Arnold V I. Loss of stability of selfoscillation close to resonance and versal deformations of equivantvector fields\[J\]. Funct Appl,1977,11:110.
[7]  邵仪. 一类双中心平面二次系统的Abel积分零点个数\[J\]. 数学学报,2007,50(2):451460.
[8]  Li W G, Zhao Y L, Li C Z, et al. Abelian integrals for quadratic centres having almost all their orbits formed by quartics\[J\]. Nonlinearity,2002,15:863885.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133