[1] Terwilliger P. Two linear transformations each tridiagonal with respect to an eigenbasis of the other[J]. Linear Algebra Appl, 2001,330149203.
[2]
[2] Terwilliger P. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an algebraic approach to the Askey scheme of orthogonal polynomials[OL]. http//uk.arxiv.org/abs/math/0408390v2.
[3]
Terwilliger P. The equitable presentation for the quantum group Uq(g) associated with a symmetrizable KacMoody algebra g[J]. J Algebra,2006,298302319.
[4]
Chari V, Pressley A. Quantum affine algebras[J]. Commun Math Phys,1991,142261283.
[5]
Jimbo M. A qanalogue of U(gl(N+1)), Hecke algebra and the YangBaxter equation[J]. Lett Math Phys,1986,11247252.
[6]
Terwilliger P. Introduction to Leonard pairs and Leonard systems[J]. Surikaisekikenkyuho Kokyuroku,1999,11096779.
[7]
Jeong K, Kang S J, Kashiwara M. Crystal bases for quantum generalized KacMoody algebras[J]. Proceedings of the London Mathematical Society,2005,90(2)395438.On Some Tridiagonal Elements of the Quantum Affine Aalgebra Uq(sι2^)HUANG Yizhao1,WANG Xiaowo2(1. Mathematical College, Sichuan University, Chengdu 610064, Sichuan;2. Primary Education College, Chongqing Normal University, Chongqing 400700)
[8]
Ito T, Terwilliger P. Tridiagonal pairs and the quantum affine algebra Uq(sι2^)[J]. The Ramanujan Journal,2007,13 3962.
[9]
Ito T, Tanabe K, Terwilliger P. Some algebras related to P and Qpolynomial association schemes[OL]. http//uk.arxiv.org/abs/math/0406556v1.
[10]
Ito T, Terwilliger P, Weng C. The quantum algebra Uq(sι2) and its equitable presentation[J]. J Algebra, 2006, 298 284301.