全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一阶非线性脉冲微分方程边值问题解的存在性

Keywords: 解的存在性,脉冲微分方程,边值问题,Schaefer不动点定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用Schaefer不动点定理,研究了一阶非线性脉冲微分方程边值问题u′(t)=f(t,u(t)),t∈[0,T]\\{tk},k=1,…,m,u(t+k)=u(t-k)+Ik(u(tk)),k=1,…,m,u(0)=βu(T)解的存在性,所得结果推广了已有的结论.

References

[1]  Agarwal R P, O’Regan D. Multiple nonnegative solutions for second order impulsive differential equations[J]. Appl Math Comput,2000,114(1):51-59.
[2]  Ding W, Han M, Mi J. Periodic boundary value problem for the second-order impulsive functional differential equations[J]. Compu Math Appl,2005,50(3/4):491-507.
[3]  Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
[4]  Liu X. Advances in impulsive differential equations[J]. Dynamics of Continuous,Discrete Impulsive System:Mathematical Analysis,2002,A9(3):313-462.
[5]  Liu Y. Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations[J]. J Math Anal Appl,2007,327(1):435-452.
[6]  Rogovchenko Y V. Impulsive evolution systems:main results and new trends[J]. Dynamics of Continuous,Discrete Impulsive System:Mathematical Analysis,1997,A3(1):57-88.
[7]  Samoilenko A M, Perestyuk N A. Impulsive Differential Equations[M]. Singapore:World Scientific,1995.
[8]  Zavalishchin S T, Sesekin A N. Dynamic Impulse Systems,Theory and Applications[M]. Dordrecht:Kluwer Academic Publishers Group,1997.
[9]  Zhang W, Fan M. Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays[J]. Math Comput Model,2004,39(4/5):479-493.
[10]  秦发金,邓瑾,姚晓洁. Volterra 积分微分方程正周期解的多解性[J]. 四川师范大学学报:自然科学版,2008,31(1):65-69.
[11]  徐宏武,李小龙. 一类高阶非线性微分方程的正周期解[J]. 四川师范大学学报:自然科学版,2010,33(2):193-195.
[12]  戴中林. 一类高阶非线性微分方程的解法[J]. 西华师范大学学报:自然科学版,2008,29(1):76-79.
[13]  屈峥. Banach空间四阶非线性脉冲微分-积分方程的极值解[J]. 郑州大学学报:理学版,2008,40(1):47-51.
[14]  戚仕硕,陈永鹏. 带“上确界”的一阶脉冲微分方程的周期边值问题(英)[J]. 郑州大学学报:理学版,2008,40(2):14-19.
[15]  He Z, Zhang X. Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions[J]. Appl Math Comput,2004,156(3):605-620.
[16]  Nieto J J, Rodriguez-Lopez R. Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations[J]. J Math Anal Appl,2006,318(2):593-610.
[17]  Rachunkov I, Tvrd M. Non-ordered lower and upper functions in second order impulsive periodic problems[J]. Dynamics of Continuous,Discrete Impulsive System:Mathematical Analysis,2005,A12(3/4):397-415.
[18]  Chen J, Tisdell C C, Yuan R. On the solvability of periodic boundary value problems with impulse[J]. J Math Anal Appl,2007,331(2):902-912.
[19]  Dong Y. Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses[J]. J Math Anal Appl,2001,264(1): 32-48.
[20]  Qian D, Li X. Periodic solutions for ordinary differential equations with sublinear impulsive effects[J]. J Math Anal Appl,2005,303(1):288-303.
[21]  Li J, Nieto J J, Shen J. Impulsive periodic boundary value problems of first-order differential equations[J]. J Math Anal Appl,2007,325(1):226-236.
[22]  Nieto J J. Periodic boundary value problems for first-order impulsive ordinary differential equations[J]. Nonlinear Anal:TMA,2002,51(7):1223-1232.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133