全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类二次投影算法的扰动分析

Keywords: 变分不等式,投影算法,扰动

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对变分不等式的投影算法的一大特点是需要通过将当前迭代点投影到一个闭凸集上来产生下一步迭代点,从数值计算角度求到精确的投影几乎是不可能的,因此需要考虑当投影不能求到精确解时,对算法所产生的迭代序列的收敛性有什么影响.在经典的二次投影算法框架下,对其中的投影加以扰动,证明扰动项在小范围内变化时,经扰动后的二次投影算法仍然收敛.

References

[1]  Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. New York:Springer-Verlag,2003.
[2]  Sibony M. Methodes iteratives pour les equations et inequations aux derivees partielles nonlineares de type monotone[J]. Calcolo,1970,7:65-183.
[3]  Xiu N, Zhang J. Some recent advances in projection-type methods for variational inequalities[J]. J Computational and Applied Mathematics,2003,152:559-585.
[4]  叶明露,邓方平,黄穗. 变分不等式的一类梯度投影算法[J]. 四川师范大学学报:自然科学版,2008,31(1):42-46.
[5]  何诣然. 一类关于混合娈分不等式的投影算法[J]. 数学物理学报,2007,A27:215-220.
[6]  万波,邓磊. 广义集值混合娈分不等式的迭代算法[J]. 西南师范大学学报:自然科学版,2008,34(3):1-4.
[7]  黄南京,吴定平. 广义线性隐补问题解的有界性及扰动迭代算法[J]. 四川大学学报:自然科学版,1996,33(5):490-493.
[8]  丁协平. 包含h-极大单调映象的广义混合拟变分包含组的灵敏性分析[J]. 四川师范大学学报:自然科学版,2007,30(1):1-9.
[9]  Solodov M V, Svaiter B F. A new projection method for variational inequality problems[J]. SIAM Jon Control and Optimization,1999,37:765-776.
[10]  Rockafellar R T. Monotone operators and the proximal point algorithm[J]. SIAM J on Control and Optimization,1976,14:877-898.
[11]  He Yiran. A new double projection algorithm for variational inequalities[J]. J Computational and Applied Mathematics,2006,185:166-173.
[12]  Alber Y I, Iusem A N, Solodov M V. On the projected subgradient method for nonsmooth convex optimization in a Hilbert space[J]. Mathematical Programming,1998,81:23-35.
[13]  Fang Changjie, He Yiran. A new projection algorithm for generalized variational inequality[J]. J Inequalities and Applications,2010,8:182576.
[14]  Xia Fuquan, Huang Nanjing, Liu Zhibin. A projected subgradient method for solving generalized mixed variational inequalities[J]. Operations Research Letters,2008,36(5):637-642.
[15]  Bnouhachema A, Noorb M A, Khalfaouic M. Modified descent-projection method for solving variational inequalities[J]. Applied Mathematics and Computation,2007,190(2):1691-1700.
[16]  Auslender A, Teboulle M. Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities[J]. Mathematical Programming,2009,120(1):27-48.
[17]  Lia Fenglian, He Yiran. An algorithm for generalized variational inequality with pseudomonotone mapping[J]. J Computational and Applied Mathematics,2009,228:212-218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133