全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

System of Parametric Generalized Implicit Quasivariationallike InclusionsInvolving Hηmonotone Operators in Banach Spaces

Keywords: sensitivityanalysis,systemofparametricgeneralizedimplicitquasivariationallikeinclusions,Hηmonotoneoperator,uniformlysmoothBanachspace2000MSC49J53,49J45doi10.3969/j.issn.10018395.2010.06.0011

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inthispaper,anewsystemofparametricgeneralizedimplicitquasivariationallikeinclusionsinvolvingHηmonotoneoperatorsisintroducedandstudiedinuniformlysmoothBanachspaces.ByusingtheresolventoperatortechniqueofHηmonotoneoperators,westudythebehaviorandsensitivityanalysisofsolutionsetofthesystemofparametricgeneralizedimplicitquasivariationallikeinclusions.Undersuitableassumptions,weprovethatthesolutionsetofthesystemofparametricgeneralizedimplicitquasivariationallikeinclusionsisnonempty,closedandLipschitzcontinuouswithrespecttotheparameters.Ourresultsarenew,andimproveandgeneralizesomecorrespondingknownresultsinthisfield.

References

[1]  Mukherjee R N, Verma H L. Sensitivity analysis of generalized variational inequalities\[J\]. J Math Anal Appl,1992,167:299-304.
[2]  Noor M A. Sensitivity analysis for quasivariational inequalities\[J\]. J Optim Theory Appl,1997,95:399-407.
[3]  Yen N D. Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint\[J\]. Math Oper Res,1995,20:695-708.
[4]  Verma R U. Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)resolvent operator technique\[J\]. Appl Math Lett,2006,19:1409-1413.
[5]  Robinson S M. Sensitivity analysis for variational inequalities by normalmap technique\[C\]// Giannessi F, Maugeri A. Variational Inequalities and Network Equilibrium Problems. New York:Plenum Press,1995.
[6]  Adly S. Perturbed algorithms and sensitivity analysis for a general class of variational inclusions\[J\]. J Math Anal Appl,1996,201:609-630.
[7]  Noor M A, Noor K I. Sensitivity analysis for quasivariational inclusions\[J\]. J Math Anal Appl,1999,236:290-299.
[8]  Agarwal R P, Cho Y J, Huang N J. Appl Math Lett,2000,13(6):19-24.
[9]  Ding X P, Lou C L. On parametric generalized quasivariational inequalities\[J\]. J Optim Theory Appl,1999,100(1):195-205.
[10]  Ding X P. Parametric completely generalized nonlinear implicit quasivariational inclusions involving hmaximal monotone mappings\[J\]. J Comput Appl Math,2005,182(2):252-289.
[11]  Ding X P. Sensitivity analysis of solution set for a new class of generalized implicit quasivariational inclusions\[C\]//Cho Y J. Fixed Point Theory and Applications. New York:Nova Sci Pub Inc,2006.
[12]  Ding Xieping. Sensitivity analysis for a system of generalized mixed quasivariational inclusions involving hmaximal monotone mappings\[J\]. J Sichuan Normal University:Natural Science,2007,30(1):19.
[13]  Ding X P, Yao J C. Sensitivity analysis for a system of parametric mixed quasivariational inclusions\[J\]. J Nonlinear Convex Anal,2007,8(2):211-225.
[14]  Kazmi K R, Khan E A. Sensitivity Analysis for parametric generalized implicit quasivariationallike inclusions involving Pηaccretive mappings\[J\]. J Math Anal Appl,2008,337:1198-1211.
[15]  Lou J, He X F, He Z. Iterative methods for solving a system of variational inclusions involving Hηmonotone operators in Banach spaces\[J\]. Comput Math Appl,2008,55:1532-1541.
[16]  Ding X P, Wang Z B. System of setvalued mixed quasivariationallike inclusions involving Hηmonotone operators in Banach spaces\[J\]. Appl Math Mech,2009,30(1):1-12.
[17]  Lan H Y. (A,η)accretive mappings and setvalued variational inclusions with relaxed cocoercive mappings in Banach spaces\[J\]. Appl Math Lett,2007,20:571-577.
[18]  Wang Z B, Ding X P. A new system of generalized mixed quasivariational like inclusions with relaxed (H,η)monotone operators in Banach spaces\[J\]. J Sichuan Normal University:Natural Science,2010,33(1):17-23.
[19]  Zeng L C. An iterative method for generalized nonlinear setvalued mixed quasivariational inequalities with Hmonotone mappings\[J\]. Comput Math Appl,2007,54:476-483.
[20]  Peng J W, Zhu D L. J Math Anal Appl,2007,327:175-187.
[21]  Nadler S B. Multivalued contraction mapping\[J\]. Pacific J Math,1969,30:475-488.
[22]  Dafermos S. Sensitivity analysis in variational inequalities\[J\]. Math Oper Res,1988,13:421-434.
[23]  Liu Z, Debnath L, Kang S M, et al. Sensitivity analysis for parametric completely generalized nonlinear implicit quasivariational inclusions\[J\]. J Math Anal Appl,2003,277:142-154.
[24]  Salahuddin, Parametric generalized setvalued variational inclusions and resolvent equations\[J\]. J Math Anal Appl,2004,198:146-156.
[25]  Park J Y, Jeong J U. Parametric generalized mixed variational inequalities\[J\]. Appl Math Lett,2004,17:43-48.
[26]  Ding X P. Sensitivity analysis for generalized nonlinear implicit quasivariational inclusions\[J\]. Appl Math Lett,2004,17:225-235.
[27]  Peng J W, Long X J. Comput Math Appl,2005,50:869-880.
[28]  Agarwal R P, Huang N J, Tan M Y. Appl Math Lett,2004,17:345-352.
[29]  Ding X P, Wang Z B. Sensitivity analysis for a system of parametric generalized mixed quasivariational inclusions involving (K,η)monotone mappings\[J\]. Appl Math Comput,2009,214:318-327.
[30]  Ding X P, Feng H R. Algorithm for solving a new class of generalized nonlinear implicit quasivariational inclusions in Banach spaces\[J\]. Appl Math Comput,2009,208:547-555.
[31]  Feng H R, Ding X P. A new system of generalized nonlinear quasivariationallike inclusions with Amonotone operators in Banach spaces\[J\]. J Comput Appl Math,2009,225:365-373.
[32]  Petryshyn W V. A characterization of strictly convexity of Banach spaces and other uses of duality mappings\[J\]. J Funct Anal,1970,6:282-291.
[33]  Zhang Q B. Generalized implicit variationallike inclusion problems involving Gηmonotone mappings\[J\]. Appl Math Lett,2007,20:216-221.
[34]  Peng J W. On a new system of generalized mixed quasivariationallike inclusions with (H,η)accretive operators in real quniformly smooth Banach spaces\[J\]. Nonlinear Anal,2008,68:981-993.
[35]  Lim T C. On fixed point stability for setvalued contractive mappings with application to generalized differential equations\[J\]. J Math Anal Appl,1985,110:436-441.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133