全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有集值映射变分不等式的理论分析

Keywords: 变分不等式,自反Banach空间,集值映射,单调性,严格可行,Tikhonov正则化

Full-Text   Cite this paper   Add to My Lib

Abstract:

在无穷维自反Banach空间中,介绍具有集值映射的变分不等式几个主要问题的研究进展.介绍如何将变分不等式等价地转化为最小化问题和非光滑的非线性方程问题,及各种转化方式的优势和不足.当变分不等式模型中的集合无界时,许多学者研究了各种各样的强制性条件,以保证变分不等式的解存在.比较几种主要强制性条件之间的关系,并在映射具有伪单调或者拟单调性质时,讨论与变分不等式解集非空/非空有界等价的强制性条件.严格可行性是变分不等式内点算法中需要的主要假设,在映射是伪单调时讨论了解集非空有界与严格可行性之间的关系.变分不等式孤立解的扰动分析被广泛研究,有很多专著介绍这方面的工作,而对整个解集的扰动分析的结果却很少.在映射具有伪单调性的条件下,介绍了变分不等式解集扰动分析的最新进展,Tikhonov正则化也被放在扰动分析的框架下讨论.另外,一些值得进一步研究的问题也被提及.

References

[1]  Aubin J P, Ekeland I. Applied Nonlinear Analysis\[M\]. New York:John Wiley & Sons Inc,1984.
[2]  Aubin J P, Frankowska H. Set-valued Analysis\[M\]. Boston MA:Birkhuser Boston Inc,1990.
[3]  Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type\[M\]. Hague:Martinus Nijhoff Publishers,1978.
[4]  Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps\[J\]. J Optim Theory Appl,1976,18(4):445-454.
[5]  Karamardian S, Schaible S. Seven kinds of monotone maps\[J\]. J Optim Theory Appl,1990,66(1):37-46.
[6]  Karamardian S, Schaible S, Crouzeix J P. Characterizations of generalized monotone maps\[J\].J Optim Theory Appl,1993,76(3):399-413.
[7]  Crouzeix J P, Ferland J A. Criteria for differentiable generalized monotone maps\[J\]. Math Programming,1996,75(3):399-406.
[8]  John R. A first order characterization of generalized monotonicity\[J\]. Math Program,2000,88(1):147-155.
[9]  Luc D T. Taylor’s formula for Ck,1 functions\[J\]. SIAM J Optim,1995,5:659-669.
[10]  Luc D T, Schaible S. Generalized monotone nonsmooth maps\[J\]. J Convex Anal,1996,3(2):195-205.
[11]  Daniilidis A, Hadjisavvas N. Coercivity conditions and variational inequalities\[J\]. Math Programming,1999,86(2):433-438.
[12]  Fukushima M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems\[J\]. Math Programming,1992,53(1):99-110.
[13]  Fukushima M. Merit function for variational inequality and complementarity problems\[C\]//Gianni D P, Franco G. Nonlinear Optimization and Applications. New York:Plenum Press,1996:155-170.
[14]  Noll D. Directional differentiability of the metric projection in Hilbert space\[J\]. Pacific J Math,1995,170(2):567-592.
[15]  Poliquin R A, Rockafellar R T, Thibault L. Local differentiability of distance functions\[J\]. Trans Am Math Soc,2000,352(11):5231-5249.
[16]  Kien B T, Wong M M, Wong N C, et al. Degree theory for generalized variational inequalities and applications\[J\]. Euro J Oper Res,2009,193(1):12-22.
[17]  Browder F E. The fixed point theory of multi-valued mappings in topological vector spaces\[J\]. Math Ann,1968,177:283-301.
[18]  Browder F E, Hess P. Nonlinear mappings of monotone type in Banach spaces\[J\]. J Func Anal,1972,11:251-294.
[19]  Aussel D, Hadjisavvas N. On quasimonotone variational inequalities\[J\]. J Optim Theory Appl,2004,121(2):445-450.
[20]  He Y R. Tikhonov regularization method for set-valued variational inequalities\[R\]. Chengdu:Department of Mathematics and Software,Sichuan Normal University,2009.
[21]  Bianchi M, Hadjisavvas N, Schaible S. Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities\[J\]. J Optim Theory Appl,2004,122(1):1-17.
[22]  Kien B T, Yao J C, Yen N D. On the solution existence of pseudomonotone variational inequalities\[J\]. J Global Optim,2008,41(1):135-145.
[23]  Ding X P, Tarafdar E. Monotone generalized variational inequalities and generalized complementarity problems\[J\]. J Optim Theory Appl,1996,88(1):107-122.
[24]  Hadjisavvas N, Schaible S. Quasimonotone variational inequalities in Banach spaces\[J\]. J Optim Theory Appl,1996,90(1):95-111.
[25]  Konnov I V. On quasimonotone variational inequalities\[J\]. J Optim Theory Appl,1998,99(1):165-181.
[26]  Han J, Huang Z H, Fang S C. Solvability of variational inequality problems\[J\]. J Optim Theory Appl,2004,122(3):501-520.
[27]  Liu Z, He Y R. Exceptional family of elements for generalized variational inequalities\[J\]. J Global Optim,2010,48:465-471.
[28]  He Y R. Stable pseudomonotone variational inequality in reflexive Banach spaces\[J\]. J Math Anal Appl,2007,330:352-363.
[29]  Flores-Bazn F. Existence theorems for generalized noncoercive equilibrium problems:the quasi-convex case\[J\]. SIAM J Optim,2000,11(3):675-690.
[30]  McLinden L. Stable monotone variational inequalities\[J\]. Math Programming,1990,48(2):303-338.
[31]  Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems\[M\]. New York:Springer-Verlag,2003.
[32]  He Y R, Ng K F. Strict feasibility of generalized complementarity problems\[J\]. J Austral Math Soc,2006,A81(1):15-20.
[33]  He Y R, Mao X Z, Zhou M. Strict feasibility of variational inequalities in reflexive Banach spaces\[J\]. Acta Math Sin:Engl Ser,2007,23(3):563-570.
[34]  Zhao Y B, Li D. Strict feasibility conditions in nonlinear complementarity problems\[J\]. J Optim Theory Appl,2000,107(3):641-664.
[35]  Lu S, Robinson S M. Variarional inequalities over perturbed polyhedral convex sets\[J\]. Math Oper Res,2008,33(3):689-711.
[36]  Robinson S M, Lu S. Solution continuity in variational conditions\[J\]. J Global Optim,2008,40(1 3):405-415.
[37]  Fan J H, Zhong R Y. Stability analysis for variational inequality in reflexive Banach spaces\[J\]. Nonlinear Anal,2008,69(8):2566-2574.
[38]  Crouzeix J P. Pseudomonotone variational inequality problems:existence of solutions\[J\]. Math Programming,1997,78(3):305-314.
[39]  Qiao F S, He Y R. Strict feasibility of pseudomonotone set-valued variational inequalities\[J\]. Optimization,DOI:10.1080/02331934.2010.507985,2010.
[40]  Mansour M A, Aussel D. Quasimonotone variational inequalities and quasiconvex programming:qualitative stability\[J\]. J Convex Anal,2008,15(3):459-472.
[41]  Ravindran G, Gowda M S. Regularization of P0-function in box variational inequality problems\[J\]. SIAM J Optim,2000,11(3):748-760.
[42]  Qi H D. Tikhonov regularization methods for variational inequality problems\[J\]. J Optim Theory Appl,1999,102(1):193-201.
[43]  Konnov I V. On the convergence of a regularization method for variational inequalities\[J\]. Comput Math Math Phys,2006,46(4):541-547.
[44]  Li F L, He Y R. An algorithm for generalized variational inequality with pseudomonotone mapping\[J\]. J Comput Appl Math,2009,228(1):212-218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133