Aubin J P, Ekeland I. Applied Nonlinear Analysis\[M\]. New York:John Wiley & Sons Inc,1984.
[2]
Aubin J P, Frankowska H. Set-valued Analysis\[M\]. Boston MA:Birkhuser Boston Inc,1990.
[3]
Pascali D, Sburlan S. Nonlinear Mappings of Monotone Type\[M\]. Hague:Martinus Nijhoff Publishers,1978.
[4]
Karamardian S. Complementarity problems over cones with monotone and pseudomonotone maps\[J\]. J Optim Theory Appl,1976,18(4):445-454.
[5]
Karamardian S, Schaible S. Seven kinds of monotone maps\[J\]. J Optim Theory Appl,1990,66(1):37-46.
[6]
Karamardian S, Schaible S, Crouzeix J P. Characterizations of generalized monotone maps\[J\].J Optim Theory Appl,1993,76(3):399-413.
[7]
Crouzeix J P, Ferland J A. Criteria for differentiable generalized monotone maps\[J\]. Math Programming,1996,75(3):399-406.
[8]
John R. A first order characterization of generalized monotonicity\[J\]. Math Program,2000,88(1):147-155.
[9]
Luc D T. Taylor’s formula for Ck,1 functions\[J\]. SIAM J Optim,1995,5:659-669.
[10]
Luc D T, Schaible S. Generalized monotone nonsmooth maps\[J\]. J Convex Anal,1996,3(2):195-205.
[11]
Daniilidis A, Hadjisavvas N. Coercivity conditions and variational inequalities\[J\]. Math Programming,1999,86(2):433-438.
[12]
Fukushima M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems\[J\]. Math Programming,1992,53(1):99-110.
[13]
Fukushima M. Merit function for variational inequality and complementarity problems\[C\]//Gianni D P, Franco G. Nonlinear Optimization and Applications. New York:Plenum Press,1996:155-170.
[14]
Noll D. Directional differentiability of the metric projection in Hilbert space\[J\]. Pacific J Math,1995,170(2):567-592.
[15]
Poliquin R A, Rockafellar R T, Thibault L. Local differentiability of distance functions\[J\]. Trans Am Math Soc,2000,352(11):5231-5249.
[16]
Kien B T, Wong M M, Wong N C, et al. Degree theory for generalized variational inequalities and applications\[J\]. Euro J Oper Res,2009,193(1):12-22.
[17]
Browder F E. The fixed point theory of multi-valued mappings in topological vector spaces\[J\]. Math Ann,1968,177:283-301.
[18]
Browder F E, Hess P. Nonlinear mappings of monotone type in Banach spaces\[J\]. J Func Anal,1972,11:251-294.
[19]
Aussel D, Hadjisavvas N. On quasimonotone variational inequalities\[J\]. J Optim Theory Appl,2004,121(2):445-450.
[20]
He Y R. Tikhonov regularization method for set-valued variational inequalities\[R\]. Chengdu:Department of Mathematics and Software,Sichuan Normal University,2009.
[21]
Bianchi M, Hadjisavvas N, Schaible S. Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities\[J\]. J Optim Theory Appl,2004,122(1):1-17.
[22]
Kien B T, Yao J C, Yen N D. On the solution existence of pseudomonotone variational inequalities\[J\]. J Global Optim,2008,41(1):135-145.
[23]
Ding X P, Tarafdar E. Monotone generalized variational inequalities and generalized complementarity problems\[J\]. J Optim Theory Appl,1996,88(1):107-122.
[24]
Hadjisavvas N, Schaible S. Quasimonotone variational inequalities in Banach spaces\[J\]. J Optim Theory Appl,1996,90(1):95-111.
[25]
Konnov I V. On quasimonotone variational inequalities\[J\]. J Optim Theory Appl,1998,99(1):165-181.
[26]
Han J, Huang Z H, Fang S C. Solvability of variational inequality problems\[J\]. J Optim Theory Appl,2004,122(3):501-520.
[27]
Liu Z, He Y R. Exceptional family of elements for generalized variational inequalities\[J\]. J Global Optim,2010,48:465-471.
[28]
He Y R. Stable pseudomonotone variational inequality in reflexive Banach spaces\[J\]. J Math Anal Appl,2007,330:352-363.
[29]
Flores-Bazn F. Existence theorems for generalized noncoercive equilibrium problems:the quasi-convex case\[J\]. SIAM J Optim,2000,11(3):675-690.
[30]
McLinden L. Stable monotone variational inequalities\[J\]. Math Programming,1990,48(2):303-338.
[31]
Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems\[M\]. New York:Springer-Verlag,2003.
[32]
He Y R, Ng K F. Strict feasibility of generalized complementarity problems\[J\]. J Austral Math Soc,2006,A81(1):15-20.
[33]
He Y R, Mao X Z, Zhou M. Strict feasibility of variational inequalities in reflexive Banach spaces\[J\]. Acta Math Sin:Engl Ser,2007,23(3):563-570.
[34]
Zhao Y B, Li D. Strict feasibility conditions in nonlinear complementarity problems\[J\]. J Optim Theory Appl,2000,107(3):641-664.
[35]
Lu S, Robinson S M. Variarional inequalities over perturbed polyhedral convex sets\[J\]. Math Oper Res,2008,33(3):689-711.
[36]
Robinson S M, Lu S. Solution continuity in variational conditions\[J\]. J Global Optim,2008,40(1 3):405-415.
[37]
Fan J H, Zhong R Y. Stability analysis for variational inequality in reflexive Banach spaces\[J\]. Nonlinear Anal,2008,69(8):2566-2574.
[38]
Crouzeix J P. Pseudomonotone variational inequality problems:existence of solutions\[J\]. Math Programming,1997,78(3):305-314.
[39]
Qiao F S, He Y R. Strict feasibility of pseudomonotone set-valued variational inequalities\[J\]. Optimization,DOI:10.1080/02331934.2010.507985,2010.
[40]
Mansour M A, Aussel D. Quasimonotone variational inequalities and quasiconvex programming:qualitative stability\[J\]. J Convex Anal,2008,15(3):459-472.
[41]
Ravindran G, Gowda M S. Regularization of P0-function in box variational inequality problems\[J\]. SIAM J Optim,2000,11(3):748-760.
[42]
Qi H D. Tikhonov regularization methods for variational inequality problems\[J\]. J Optim Theory Appl,1999,102(1):193-201.
[43]
Konnov I V. On the convergence of a regularization method for variational inequalities\[J\]. Comput Math Math Phys,2006,46(4):541-547.
[44]
Li F L, He Y R. An algorithm for generalized variational inequality with pseudomonotone mapping\[J\]. J Comput Appl Math,2009,228(1):212-218.