全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Attraction and Invariant Set for Impulsive Partial Functional Differential Equationsin Unbounded Domains

Keywords: attraction,invariantset,mildsolution,impulsive,partialfunctionaldifferentialequations2000MSC35B40doi10.3969/j.issn.1001-8395.2010.05.027

Full-Text   Cite this paper   Add to My Lib

Abstract:

Theattractionforanonlinearimpulsivepartialfunctionaldifferentialequationinaunboundeddomainisinvestigated.Byapplyingthemethodoffundamentalsolution,avariationofconstantsformulaisestablishedforthemildsolutionoftheequation.

References

[1]  Bernal A R, Wang B X. Attractors for partly dissipative reaction diffusion systems in Rn[J]. J Math Anal Appl,2000,252:790803.
[2]  Temam R. Infinitedimensional Dynamical Systems in Mechanics and Physics[M]. 2nd ed. New York:SpringerVerlag,1997.
[3]  Wang B X. Attractors for reactiondiffusion equations in unbounded domains[J]. Physica,1999,D128:4152.
[4]  Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
[5]  Wu J. Theory and Application of Partial Functional Differential Equations[M]. New York:SpringerVerlag,1996.
[6]  Bainov D D, Minchev E, Nakagawa K. Asymptotic behavior of solution of impulsive semilinear parabolic equations[J]. Nonlinear Anal:TMA,1997,30:27252734.
[7]  Bainov D D, Kirane M, Minchev E. Stability properties of solutions of impulsive parabolic differentialfunctional equations[J]. Applicable Analysis,2001,79:6372.
[8]  Fu X, Liu X, Sivaloganathan S. Oscillation criteria for impulsive parabolic differential equations with delay[J]. J Math Anal Appl,2002,268:647664.
[9]  Hernndez E, Pierr M, Goncalves G. Existence results for an impulsive abstract partial differential equation with statedependent delay[J]. Comput Appl Math,2006,52:411420.
[10]  Rezounenko A V, Wu J. A nonlocal PDE model for population dynamics with stateselective delay: Local theory and global attractors[J]. J Comput Appl Math,2006,190:99113.
[11]  Li J, Huang J. Uniform attractors for nonautonomous parabolic equations with delays[J]. Nonlinear Anal:TMA,2009,71:21942209.
[12]  Friedman A. Partial Differential Equations of Parabolic Type[M]. New Jersey:PrenticeHall,1964.
[13]  Horn R A, Johnson C R. Matrix Analysis[M]. Cambrige:Cambrige University Press,1985.
[14]  Arrieta J M, Cholewa J W, Dlotko T, et al. Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains[J]. Nonlinear Anal:TMA,2004,56:515554.
[15]  Efendiev M, Miranville A, Zelik S. Global and exponential attractors for nonlinear reactiondiffusion systems in unbounded domains[J]. Proc Roy Soc Edinburgh:Sect A,2004,134:271315.
[16]  Pao C V. Coupled nonlinear parabolic systems with time delays[J]. J Math Anal Appl,1995,196:237265.
[17]  Xu D, Li S, Zhou X, et al. Invariant set and stable region of a class of partial differential equations with time delays[J]. Nonlinear Anal:RWA,2001,2:161169.
[18]  Xu D, Yang Z. Attracting and invariant sets for a class of impulsive functional differential equations[J]. J Math Anal Appl,2007,329:10361044.
[19]  Schmalfuss B. Attractor for nonautonomous and random dynamical systems perturbed by impulses[J]. Discrete Contin Dyn Syst,2003,9:727744.
[20]  Caraballo T, Real J. Attractors for 2D NavierStokes models with delays[J]. J Diff Eqns,2004,205:271297.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133