Duan Wen-shan, Hong Xue-ren, Shi Yu-ren, et al. Weakly two dimensional solitary waves on coupled nonlinear transmission lines[J]. Chin Phys Lett,2002,19(9):1231-1233.
[2]
Monro S, Parkes E J. The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions[J]. J Plasma Phys,1999,62(3):305-317.
[3]
Monro S, Parkes E J. Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation[J]. J Plasma Phys,2000,64(3):411-426.
[4]
Li B, Chen Y, Zhang H. Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J]. Appl Math Comput,2003,146(2/3):653-666.
[5]
Wazwaz A M. Exact solutions with solitons and periodic structures for the ZK equation and its modified form[J]. Communications in Nonlinear Science and Numerical Simulation,2005,10(6):597-606.
Wang M L, Li X Z, Zhang J L. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett,2008,A372(4):417-423.
[13]
Ahmet B. Application of the (G′/G)-expansion method for nonlinear evolution equations[J]. Phys Lett,2008,A372(19):3400-3406.
[14]
Wazwaz A M. The extended tanh method for the Zakharov-Kuznetsov(ZK) equation, the modified ZK equation, and its generalized forms[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(6):1039-1047.
[15]
Wazwaz A M. Nonlinear dispersive special type of the Zakharov-Kuznetsov equation ZK(n,n) with compact and noncompact structures[J]. Applied Mathematics and Computation,2005,161(2):577-590.
Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys Lett,1996,A216(1-5):67-75.
Zhang S, Tong J L, Wang W. A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients[J]. Phys Lett,2008,A372(13):2254-2257.
[23]
Zhang J, Wei X L, Lu Y J. A generalized (G′/G)-expansion method and its applications[J]. Phys Lett,2008,A372(20):3653-3658.
[24]
Li L X, Wang M L. The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear Schrdinger equation[J]. Appl Math Comput,2009,208(2):440-445.