全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

扩展的(G′/G)-展开法和gZK方程的精确解

Keywords: ZK方程,gZK方程,扩展的(G′/G)-展开法,显式行波解,齐次平衡

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用扩展的(G′/G)-展开法,借助于计算机代数系统Mathematica,获得了gZK方程和ZK方程3种类型的显式行波解,分别以含两个任意参数的双曲函数、三角函数及有理函数表示.

References

[1]  Duan Wen-shan, Hong Xue-ren, Shi Yu-ren, et al. Weakly two dimensional solitary waves on coupled nonlinear transmission lines[J]. Chin Phys Lett,2002,19(9):1231-1233.
[2]  Monro S, Parkes E J. The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions[J]. J Plasma Phys,1999,62(3):305-317.
[3]  Monro S, Parkes E J. Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation[J]. J Plasma Phys,2000,64(3):411-426.
[4]  Li B, Chen Y, Zhang H. Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J]. Appl Math Comput,2003,146(2/3):653-666.
[5]  Wazwaz A M. Exact solutions with solitons and periodic structures for the ZK equation and its modified form[J]. Communications in Nonlinear Science and Numerical Simulation,2005,10(6):597-606.
[6]  林麦麦,段文山,吕克璞. (3+1)维ZK方程的N孤子解[J]. 西北师范大学学报:自然科学版,2006,42(1):41-45.
[7]  石玉仁,郭鹏等. ZK方程和mZK方程的精确周期解[J]. 西北师范大学学报:自然科学版,2005,41(4):34-36.
[8]  李春海,唐生强,黄文韬,等. 一类广义Camassa-Holm方程的孤立尖波、孤子类解和周期解[J]. 四川师范大学学报:自然科学版,2009,32(5):572-575.
[9]  刘倩,周钰谦. 二维Klein-Gordon-Zakharov方程的显示精确解[J]. 四川师范大学学报:自然科学版,2009,32(6):1-4.
[10]  曹瑞,张健. 耦合非线性 Klein-Gordon 方程组的周期解[J]. 四川师范大学学报:自然科学版,2006,29(2):158-160.
[11]  洪宝剑,卢殿臣,张大珩. 带强迫项变系数组合KdV-Burgers方程的显式精确解[J]. 广西师范大学学报:自然科学版,2007,25(1):17-20.
[12]  Wang M L, Li X Z, Zhang J L. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett,2008,A372(4):417-423.
[13]  Ahmet B. Application of the (G′/G)-expansion method for nonlinear evolution equations[J]. Phys Lett,2008,A372(19):3400-3406.
[14]  Wazwaz A M. The extended tanh method for the Zakharov-Kuznetsov(ZK) equation, the modified ZK equation, and its generalized forms[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(6):1039-1047.
[15]  Wazwaz A M. Nonlinear dispersive special type of the Zakharov-Kuznetsov equation ZK(n,n) with compact and noncompact structures[J]. Applied Mathematics and Computation,2005,161(2):577-590.
[16]  杨慧,黄文华. 广义 Nizhink-Novikov-Vesselov 方程的显式精确行波解[J]. 贵州师范大学学报:自然科学版,2005,23(3):85-89.
[17]  何宝钢,徐昌智. 二维广义色散长波方程的显式行波解[J]. 郑州大学学报:理学版,2005,37(1):26-29.
[18]  赵云梅,芮伟国.Equal Width 波方程的各种椭圆函数周期解和孤子解[J]. 四川师范大学学报:自然科学版,2008,31(2):190-193.
[19]  Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Phys Lett,1996,A216(1-5):67-75.
[20]  杨先林,唐驾时. (2+1)维色散长波方程的行波解[J]. 广西师范大学学报:自然科学版,2008,26(3):33-36.
[21]  刘年福. 非线性浅水波方程组的精确解[J]. 贵州师范大学学报:自然科学版,2003,21(3):40-42.
[22]  Zhang S, Tong J L, Wang W. A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients[J]. Phys Lett,2008,A372(13):2254-2257.
[23]  Zhang J, Wei X L, Lu Y J. A generalized (G′/G)-expansion method and its applications[J]. Phys Lett,2008,A372(20):3653-3658.
[24]  Li L X, Wang M L. The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear Schrdinger equation[J]. Appl Math Comput,2009,208(2):440-445.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133