Verma R U. Generalized nonlinear variational inclusion problems involving A-monotone mappings[J]. Appl Math Lett,2006,19:960-963.
[2]
Ding X P, Xia F Q. A new class of completely generalized quasi-variational inclusions in Banach spaces[J]. J Comput Appl Math,2002,147:369-383.
[3]
Xia F Q, Huang N J. Variational inclusions with a general H-monotone operator in Banach spaces[J]. Comput Math Appl,2007,54:24-30.
[4]
Feng H R, Ding X P. A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces[J]. J Comput Appl Math,2009,225(2):365-373.
[5]
Kazmi K R, Bhat M I. Iterative algorithm for a system of nonlinear variational-like inclusions[J]. Comput Math Appl,2004,48:1929-1935.
[6]
Hassouni A, Moudafi A. A perturbed algorithm for variational inclusions[J]. J Math Anal Appl,1994,185:706-712.
[7]
Petryshyn W V. A characterization of strictly convexity of Banach spaces and other uses of duality mappings[J]. J Funct Anal,1970,6:282-291.
[8]
Zhang Q B. Generalized implicit variational-like inclusion problems involving G-η-monotone mappings[J]. Appl Math Lett,2007,20(2):216-221.
[9]
Lan H Y, Cho Y J, Verma R U. Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J]. Comput Math Appl,2006,51:1529-1538.
[10]
Lan H Y. (A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J]. Appl Math Lett,2007,20(5):571-577.
[11]
Fang Y P, Huang N J, Thompson H B. A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J]. Comput Math Appl,2005,49:365-374.
[12]
Fang Y P, Huang N J. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces[J]. Appl Math Lett,2004,17:647-653.