全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类次线性二阶Hamiltonian系统的无穷多周期解

Keywords: 次线性,周期解,Ekeland变分原理,极小化作用原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类非自治次线性二阶Hamiltonian系统.不假设非线性项具有对称性,利用Ekeland变分原理与极小化作用原理,获得了两个无穷的周期解序列,一个是相应泛函的局部极小点,另一个是泛函的极小极大类型的临界点.

References

[1]  Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems[M]. New York: Springer-Verlag,1989.
[2]  Antonacci F, Magrone P. Second order nonautonomous systems with symmetric potential changing sign[J]. Rend Mat Appl,1998,18(7):367-379.
[3]  Wu X P, Tang C L. Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials[J]. Nonlinear Anal:TMA,2003,55(6):759-769.
[4]  Zou W M, Li S J. Infinitely many solutions for Hamiltonian systems[J]. J Diff Eqns,2002,186(2):141-164.
[5]  Faraci F, Livrea R. Infinitely many periodic solutions for a second-order nonautonomous system[J]. Nonlinear Anal:TMA,2003,54(1):417-429.
[6]  Tao Z L, Tang C L. Periodic solutions of second-order Hamiltonian systems[J]. J Math Anal Appl,2004,293(2):435-445.
[7]  贺铁山,陈文革,雷友发. 二阶离散Hamiltonian系统的多重变号周期解[J]. 四川师范大学学报:自然科学版,2010,33(4):462-466.
[8]  Ma S W, Zhang Y X. Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[J]. J Math Anal Appl,2009,351(1):469-479.
[9]  Zhang P, Tang C L. Infinitely many periodic solutions for nonautonomous sublinear second-order Hamiltonian systems[J]. Abstract and Applied Analysis,2010,(7):1-10.
[10]  毕盈,郑召文,侯伟. 两个Hamilton算子积的自伴性[J]. 曲阜师范大学学报:自然科学版,2009,35(2):1-5.
[11]  李成岳,路月峰,钟仕增,等. 一类非对称二阶系统正值同宿轨道的存在性[J]. 曲阜师范大学学报:自然科学版,2005,31(4):6-10.
[12]  李成岳. 位势符号可变的非周期超二次Hamilton系统的同宿轨道[J]. 曲阜师范大学学报:自然科学版,2004,30(1):21-26.
[13]  Wu X P, Tang C L. Periodic solutions of a class of non-autonomous second-order systems[J]. J Math Anal Appl,1999,236(8):227-235.
[14]  Wu X P, Tang C L. Periodic solutions for second order systems with not uniformly coercive potential[J]. J Math Anal Appl,2001,215(7):386-397.
[15]  Tang C L. Multiplicity of periodic solutions for second-order systems with a small forcing term[J]. Nonlinear Anal:TMA,1999,38(4):471-479.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133