全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二维Klein-Gordon-Zakharov方程新孤波解的构造

, PP. 335-338

Keywords: 二维Klein-Gordon-Zakharov方程,孤波解,齐次平衡法,Riccati方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用齐次平衡法思想,利用对解结构的新假设,实现了对二维Klein-Gordon-Zakharov方程新孤波解的构造.这种方法与经典的Riccati方程扰动法比较,其优势在于可以有效避免sech这种一阶双曲正割型解的丢失,从而给出二维Klein-Gordon-Zakharov方程更多孤波型解.

References

[1]  Zakharov V E. Collapse of Langmuir wave[J]. Sov Phys JETP,1972,35:908-914.
[2]  Li J B. Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations[J]. Chaos, Solitons and Fractals,2007,34:867-871.
[3]  Ozawa T, Tsutaya K, Tsutsumi Y. Normal form and global solutions for the Klein-Gordon-Zakharov equations[J]. Ann Inst H Poincare Anal Nonlineaire,1995,12:459-503.
[4]  Ozawa T, Tsutaya K, Tsutsumi Y. Well-posedness in energy space for Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. Math Ann,1999,313:127-207.
[5]  Tsutaya K. Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations[J]. Nonlinear Anal,1996,27:1373-1380.
[6]  孙璐,田立新. 广义色散Camassa-Holm模型的奇异孤子[J]. 物理学报,2007,56:3667-3674.
[7]  周钰谦,张健,刘倩. 耦合Klein-Gordon-Schrdinger方程显示解的统一构造[J]. 四川师范大学学报:自然科学版,2006,29(2):166-170.
[8]  Wang Tingchun, Chen Juan, Zhang Luming. Conservative difference methods for the Klein-Gordon-Zakharov equations[J]. J Comput Appl Math,2007,205(1):430-452.
[9]  Adomian G. Non-perturbative solution of the Klein-Gordon-Zakharov equation[J]. Appl Math Comput,1997,81(1):89-92.
[10]  Byrd P F, Fridman M D. Handbook of Elliptic Integrals for Engineers and Scientists[M]. Berlin:Springer-Verlag,1971.
[11]  Dendy R O. Plasma Dynamics[M]. Oxford:Oxford University Press,1990.
[12]  周钰谦,张健,曾德胜. 耦合Klein-Gordon-Schrdinger方程的新显示解[J]. 四川师范大学学报:自然科学版,2006,29(1):46-49.
[13]  周钰谦,刘倩,张健. 一类非线形波动方程的复线形孤子解[J]. 四川师范大学学报:自然科学版,2005,28(1):73-75.
[14]  周钰谦,刘倩,张健. 一类非线形波动方程的精确孤立波解[J]. 四川师范大学学报:自然科学版,2005,28(2):165-167.
[15]  Gan Zaihui, Guo Boling, Zhang Jian. Instability of standing wave, global existence and blowup for the Klein-Gordon-Zakharov system with different-degree nonlinearities[J]. J Diff Eqns,2009,246(10):4097-4128.
[16]  Shang Yadong, Huang Yong, Yuan Wenjun. New exact traveling wave solutions for the Klein-Gordon-Zakharov equations[J]. Comput Math Appl,2008,56(5):1441-1450.
[17]  Gan Zaihui, Zhang Jian. Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions[J]. J Math Anal Appl,2005,307(1):219-231.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133