全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

渐近非扩张映射族公共不动点的粘性逼近

, PP. 317-322

Keywords: 强收敛,渐近非扩张映射,粘性迭代序列,一致正规结构,范数一致Gteaux可微

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Banach空间中引入和研究了有限个渐近非扩张映射的迭代算法,用以寻求这有限个渐近非扩张映射的公共不动点.在一定条件下,用粘性逼近法证明了这种新迭代序列的强收敛性,推广了近期一些作者的相应结果.

References

[1]  Chang S S, Lee H W J, Chan C K, et al. Approximating solutions of variational inequalities for asymptotically nonexpansive mappings\[J\]. Appl Math Comput,2009,212:51-59.
[2]  Liu L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces\[J\]. J Math Anal Appl,1995,194(1):114-125.
[3]  Lim T C, Xu H K. Fixed point theorems for asymptotically nonexpansive mappings\[J\]. Nonlinear Anal:TMA,1994,22(11):1345-1355.
[4]  Kim T H, Xu H K. Remarks on asymptotically nonexpansive mappings\[J\]. Nonlinear Anal:TMA,2000,41(3/4):405-415.
[5]  Takahashi W, Ueda Y. On Reich’s strong convergence theorems for resolvents of accretive operators\[J\]. J Math Anal Appl,1984,104(2):546-553.
[6]  赵良才.Banach空间中有限簇非扩张非自映象具误差的迭代逼近\[J\]. 四川师范大学学报:自然科学版,2008,31(2):159-163.
[7]  郭庆义,周迎春,马丽蓉. Banach空间中渐近非扩张映象的收敛性\[J\]. 四川师范大学学报:自然科学版,2008,31(5):554-557.
[8]  Chang S S. On Chidume’s open questions and approximation solutions of multivalued atrongly accretive mappings equations in Banach spaces\[J\]. J Math Anal Appl,1997,216:94-111.
[9]  Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings\[J\]. Proc Am Math Soc,1972,35(1):171-174.
[10]  Shahzad N, Udomene A. Fixed point solutions of variational inequalities for asymptotically nonexpansive mappings in Banach spaces\[J\]. Nonlinear Anal:TMA,2006,64(3):558-567.
[11]  Reich S. On the asyptotic behavior of nonlinear semigroups and the range of accretive operators\[J\]. J Math Anal Appl,1984,79:119-126.
[12]  王德珍,邓磊. 有限个渐进非扩张非自映射的带有误差的Ishikawa迭代的收敛性\[J\]. 西南大学学报:自然科学版,2008,30(10):15-19.
[13]  王广兰,邓磊. 广义混合隐拟变分不等式解的算法\[J\]. 西南师范大学学报:自然科学版,2006,31(4):11-14.
[14]  李红刚,田有先. 带模糊映象的新一类广义混合拟变分包含的迭代算法\[J\]. 四川师范大学学报:自然科学版,2008,31(2):194-197.
[15]  闻道君,邓磊. 一般变分不等式的三步迭代算法\[J\]. 四川师范大学学报:自然科学版,2009,32(4):436-438.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133