全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不具Lipschiz条件的一般变分不等式解的带误差Ishikawa迭代逼近

, PP. 206-211

Keywords: Lipschitz条件,一般变分不等式,强单调,反单调,辅助次微分原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过引入辅助次微分原理,在Banach空间中证明了一类一般变分不等式解的存在性定理,在非线性算子不具Lipschitz条件下,建立和分析了这类一般变分不等式解的带误差Ishikawa迭代逼近.这些算法和结果改进和推广了许多已知的结果

References

[1]  Baiocchi C, Capelo A. Variational and Quasivariational Inequalities,Applications to Free Boundary Problems[M]. New York:John Wiley and Sons,1984.
[2]  Giannessi F, Maugeri A. Variational Inequalities and Network Equilibrium Problems[M]. New York:Plenum Press,1995.
[3]  Glowinski R, Lions J, Tremolieres R. Numericial Analysis of Variational Inequalities[M]. Amsterdam:North-Holland,1981.
[4]  Harker P T, Pang J S. Finite-dimensional variational inequalities and nonlinear comple-mentarity problems[J]. Math Program,1990,48:161-220.
[5]  Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications[M]. New York:Academic Press,1980.
[6]  Noor M A, Noor K I, Rassias T M. Invitation to variational inequalities[C]//Analysis,Geometry and Group:A Riemann Legacy Volume. Florida:Hadronic Press,1993:373-448.
[7]  Noor M A. A new iterative method for monotone mixed inequalities[J]. Math Comput Modelling,1997,26(7):29-34.
[8]  Noor M A. General algorithm for variational inequalities[J]. Math Japonica,1993,38(1):47-53.
[9]  Ding X P, Luo C L. Existence and algorithm for solving some generalized mixed variational inequalities[J]. J Computers Mathematics,1999,37:23-30.
[10]  Yao J C. Existence of generalized variational inequalities[J]. Operations Res Lett,1994,15:35-40.
[11]  Aubin J P, Ekeland I. Applied Nonlinear Analysis[M]. New York:John Wiley and Sons,1984:168-169.
[12]  张石生. 变分不等式和相补问题理论及应用[M]. 上海:上海科学技术出版社,1991.
[13]  罗春林. 不具Lipschitz条件的Browder变分不等式解的Ishikawa迭代算法[J]. 四川师范大学学报:自然科学版,2005,28(1):57-60.
[14]  丁协平. 解非线性混合似变分不等式的预测-校正迭代算法[J]. 四川师范大学学报:自然科学版,2003,26(1):1-5.
[15]  Noor M A. Wiener-hopf equations and variational inequalities[J]. J Optim Theory Appl,1993,79(1):197-206.
[16]  Siddiqi A H, Ansari Q H. Strongly nonlinear quasi-variational inequalities[J]. J Math Anal Appl,1990,149:444-450.
[17]  Noor M A. An iterative algorithm for variational inequalities[J]. J Math Anal Appl,1991,158(2):448-455.
[18]  Ansari Q H, Yao J C. Iterative schems for solving mixed variational-like inequalities[J]. Optim Theory and Appl,2001,108(3):527-541.
[19]  Ding X P, Tan K K. A minimax inequality with applications to existence for equilibrium point and fixed point theorem[J]. Coll Math,1992,63:233-247.
[20]  Xu H K. Iterative algorithms for nonlinear opertators[J]. J London Math Soc,2002,66:240-256.
[21]  李林珂,丁协平. 解变分不等式的超梯度Mann迭代算法[J]. 四川师范大学学报:自然科学版,2005,28(5):514-517.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133