全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集值变分不等式解的存在性问题

, PP. 156-158

Keywords: 变分不等式,例外簇,不动点,零调集值映射

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究Banach空间中的集值变分不等式问题,提出了一个新的例外簇概念,并利用零调集值映射的一个Leray-Schauder型不动点定理,证明了变分不等式或有解,或集值映射\J(x)-F(x)\K→2B*有一例外簇,同时给出了集值映射\J(x)-F(x)\无例外簇的条件.

References

[1]  Albert Y. Metric and generalized projection operators in Banach spaces:properties and applications[C]Kartsatos A. Theory and Application of Nonlinear Operators of Monotonic and Accretive Type. New York:Dekker,1996.
[2]  Facchinei F, Pang Jongshi. Finitedimensional Variational Inequalities and Complementarity Problems[M]. New York:SpringerVerlag,2003.
[3]  Li Jinlu, Whitaker J. Exceptional family of elements and solvability of variational inequalities for mapping defined only on closed convex cones in Banach spaces[J]. J Math Anal Appl,2005,310:254-261.
[4]  Zhao Y B. Exceptional family of elements for a variational inequality problem and its applications[J]. J Global Optim,1999,14:313-330.
[5]  范江华,赵康生. 集值变分不等式问题的例外簇[J]. 数学学报,2007,50(1):183-188.
[6]  汪春阳. 一类广义随机非线性隐变分不等式组[J]. 四川师范大学学报:自然科学版,2008,31(5):505-507.
[7]  方长杰. 一类带有三元算子的广义混合拟平衡问题[J]. 四川师范大学学报:自然科学版,2008,31(3):285-288.
[8]  Isac G, Zhao Y B. Exceptional family of elements and the solvability of variational inequalities for unbounded sets in infinite dimensional Hilbert Spaces[J]. J Math Anal Appl,2000,246:544-556.
[9]  Isac G, Bulavski V. Exceptional families topological degree and complementarity problems[J]. J Global Optim,1997,10:207-225.
[10]  Kien B T. Degree theory for generalized variational inequality and applications[J]. European J Applied Mathematics,2007,340:707-720.
[11]  Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Application\[M\]. New York:Academic Press,1980.
[12]  毛秀珍,何诣然. 拟单调广义向量变分不等式[J]. 四川师范大学学报:自然科学版,2007,30(2):134-137.
[13]  王敏,何诣然. Banch空间中集值映射的广义变分不等式问题[J]. 四川师范大学学报:自然科学版,2006,28(5):447-449.
[14]  屈德宁. Banach空间中的一类非线性混合似变分不等式[J]. 四川师范大学学报:自然科学版,2005,27(1):19-23.
[15]  毛秀珍,何诣然. 拟单调二元函数的广义平衡问题[J]. 四川师范大学学报:自然科学版,2008,31(1):11-13.
[16]  张永乐,何诣然. Banach空间中伪单调变分不等式的严格可行性[J]. 四川师范大学学报:自然科学版,2009,32(4):424-426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133