全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乘性与信号调制噪声在线性模型中的随机共振

, PP. 270-272

Keywords: 随机共振,乘性噪声,信号调制噪声,线性模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了乘性噪声和信号调制噪声作用下一阶线性模型的随机共振现象.根据线性系统理论,利用噪声的统计特性,得到了系统输出幅度增益的解析表达式.研究发现,输出幅度增益是激励信号频率和系统参数的非单调函数,即出现了“真实的”随机共振和广义的随机共振现象;另外,输出幅度增益是噪声强度和噪声相关率的单调函数随噪声强度的增大而增大,随噪声相关率的增大而减小.

References

[1]  Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. J Phys,1981,A14(11):L543-L547.
[2]  Wu X J, Gai W S, Shao X G, et al. A method based on stochastic resonance for the detection of weak analytical signal[J]. Talanta,2003,61(2):863-869.
[3]  祝恒江,李蓉,温孝东. 利用随机共振在强噪声下提取信息信号[J]. 物理学报,2003,52(10):2404-2408.
[4]  Fauve S, Heslot F. Stochastic resonance in a bistable system[J]. Phys Lett,1983,A97(1/2): 5-7.
[5]  罗晓琴,朱士群. 非线性系统中的关联色噪声[J]. 物理学报,2002,51(5):977-981.
[6]  Guo Feng, Zhou Yu-rong, Jiang Shi-qi, et al. Stochastic resonance in a mono-stable system with multiplicative and additive noise[J]. J Phys,2006,A39:13861-13868.
[7]  Gitterman M. Harmonic oscillator with fluctuating damping parameter[J]. Phys Rev,2004,E69(4):041101-041104.
[8]  Shapiro V E, Loginov V M. Formulae of differentiaton and their use for solving stochastic equations[J]. Physica,1978,A91:563-574.
[9]  Hu Gang, Ding Da-fu. Higher signal to noise ratio obtained by applying stochastic resonance system[J]. J Beijing Normal University:Natural Science,1992,28(3):348-355.
[10]  Barzykin A V, Scki K. Periodically driven linear system with multiplicative colored noise[J]. Phys Rev,1998,E57(6):6555-6563.
[11]  周玉荣,郭锋,庞小峰. 具有调制二值噪声线性系统的随机共振[J]. 重庆师范大学学报:自然科学版,2007,2(1):48-51.
[12]  康艳梅,徐建学,谢勇. 弱噪声极限下二维布朗运动的随机共振现象[J]. 物理学报,2003,52:2712.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133