全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变分包含与非扩张映象不动点问题公解的黏性算法

, PP. 62-68

Keywords: 变分包含,非扩张映象,黏性逼近,多值极大单调映象,逆-强单调映象,不动点

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Hilbert空间中引入和研究了一种新的迭代算法,用以寻求具多值极大单调映象和逆-强单调映象的变分包含的解集与非扩张映象的不动点集的公共元.在适当的条件下,用黏性逼近算法证明了逼近于这一公共元的某些强收敛定理.所得结果改进和推广了文献的相应结果.

References

[1]  Noor M A, Noor K I. Sensitivity analysis of quasi variational inclusions[J]. J Math Anal Appl,1999,236:290-299.
[2]  Chang S S. Set-valued variational inclusions in Banach spaces[J]. J Math Anal Appl,2000,248:438-454.
[3]  Demyanov V F, Stavroulakis G E, Polyakova L N, et al. Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics[M]. Dordrecht:Kluwer Academic,1996.
[4]  丁协平. 包含h-极大单调映象的广义混合拟变分包含组的灵敏性分析[J]. 四川师范大学学报:自然科学版,2007,30(1):1-9.
[5]  Iiduka H, Takahashi W, Toyoda M. Approximation of solutions of variational inequalities for monotone mappings[J]. Pan Am Math,2004,14: 49-61.
[6]  Pascali D. Nonlinear Mappings of Monotone Type[M]. Netherlands:Sijthoff and Noordhoff International Publishers,1978.
[7]  Suzuki T. Strong convergence of Krasnoselskii and Mann’s type sequences for oneparameter nonexpansive semigroups without Bochner integrals[J]. J Math Anal Appl,2005,305:227-239.
[8]  Chang S S. Existence and approximation of solutions of set-valued variational inclusions in Banach spaces[J]. Nonl Anal TMA,2001,47:583-594.
[9]  Zhang S S, Lee J H, Chan C K. Algorithms of common solutions for quasi-variational inclusion and fixed point problems[J]. Appl Math Mech,2008,29:1-11.
[10]  Noor M A. Generalized set-valued variational inclusions and resulvent equations[J]. J Math Anal Appl,1998,228:206-220.
[11]  Hartman P, Stampacchia G. On some nonlinear elliptic differential equations[J]. Acta Math,1966,115:271-310.
[12]  Liu F, Nashed M Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates[J]. Set-valued Analysis,1998,6:313-344.
[13]  Takahashi W, Toyoda M. Weak convergence theorems for nonexpansive mappings and monotone mappings[J]. J Opt Theo Appl,2003,118:417-428.
[14]  Iiduka H, Takahashi W. Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings[J]. Nonl Anal,2005,61:341-350.
[15]  Nadezhkina N, Takahashi W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings[J]. J Opt Theo Appl,2006,128:191-201.
[16]  Zeng L C, Yao J C. Strong convergence theorem by an extragradient methods for fixed point problems and variational inequality problems[J]. Taiwanese Math,2006,10:1293-1303.
[17]  Brezis H. Ope’rateur Maximaux Monotones et Semiproupes de Contractions Dans Les Espaces de Hilbert[M]. Amsterdam:North-Holland,1973.
[18]  Liu L S. J Math Anal Appl,1995,194:114-125.
[19]  Bruck R E. J Math Anal Appl,1977,61:159-164.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133