全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PT整环的研究

, PP. 27-31

Keywords: t-理想,PT整环,v-凝聚整环,SM整环,Noether环

Full-Text   Cite this paper   Add to My Lib

Abstract:

引入了PT整环的概念,通过例子说明PTW整环不是PT整环,刻画了PT整环的局部化性质;然后讨论了其拉回图;最后对PT整环的几类扩环的性质进行了描述.

References

[1]  Mimouni A. Integral domains in which each ideal is a w-ideal[J]. Commun Algebra,2003,29(6):1463-1488.
[2]  Mimouni A. TW-domains and strong Mori domains[J]. J Pure Appl Algebra,2003,177:79-93.
[3]  万吉湘,王芳贵. PTW整环的刻画[J]. 四川师范大学学报:自然科学版,2006,29(4):392-396.
[4]  Fontana M. On the class group and the local class group of a pullback[J]. J Algebra,1996,181:803-835.
[5]  Park M H. On overrings of strong Mori domains[J]. J Pure Appl Algebra,2002,172(1):79-85.
[6]  Kwak D J, Park Y S. On t-flat overrings[J]. Chinese Journal of Mathematics,1995,23(1):17-24.
[7]  Querre J. Intersections d′anneaux integres[J]. J Algebra,1976,43:55-66.
[8]  Gilmer R. Multiplicaion Ideal Theory[M]. New York:Marcel Dekker INC,1972.
[9]  Heinser W. Integral domains in which each non-zero ideal is divisorial[J]. Matenatika,1968,15:164-170.
[10]  Wang F G. w-dimension of domains II[J]. Commun Algebra,2001,29(6):2419-2429.
[11]  Dobbs D E, Houston E G, Lucas T G, et al. On t-linked overrings[J]. Commun Algebra,1992,20(5):1463-1488.
[12]  Wang F G, McCasland R L. On strong Mori domains[J]. J Pure Appl Algebra,1999,135:155-165.
[13]  Gabelli S, Houston E. Coherentlike conditions in pullbacks[J]. Michigan Math,1997,14:99-133.
[14]  Gabelli S, Houston E. Ideal Theory in Pullbacks[C]. Chapman S, Glaz S, et al. Non-Noetherian Commutative Ring Theory. Mathematics and Its Applications. Dordrecht:Kluwer Academic Publishers,2000,520:199-227.
[15]  Matijevic J R. Maximal ideal transforms of Noetherian rings[J]. Proc Am Math Soc,1976,54:49-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133