全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Banach空间一类新的含松弛-(H,η)-单调算子的广义混合拟似变分包含组

, PP. 17-23

Keywords: 松弛-(H,η)-单调算子,豫解算子,广义混合拟似变分包含组,迭代算法,Banach空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

在Banach空间内,引入和研究了一类新的含松弛-(H,η)-单调算子的广义混合拟似变分包含组.利用松弛-(H,η)-单调算子的豫解算子技巧,给出了求解这类广义混合拟似变分包含组的迭代算法,并证明了由迭代算法生成的迭代序列强收敛于该变分包含组的精确解.结果改进与推广了近期文献中的相应结果.

References

[1]  Verma R U. Generalized nonlinear variational inclusion problems involving A-monotone mappings[J]. Appl Math Lett,2006,19:960-963.
[2]  Fang Y P, Huang N J. H-monotone operators and system of variational inclusions[J]. Commun Appl Nonlinear Anal,2004,11(1):93-101.
[3]  丁协平. 包含h-极大单调映像的广义混合拟变分包含组的灵敏性分析(英)[J]. 四川师范大学学报:自然科学版,2007,30(1):1-9.
[4]  Peng J W. Set-valued variational inclusions with T-accretive operators in Banach spaces[J]. Appl Math Lett,2006,19:273-282.
[5]  Ding X P, Lou C L. Perturbed proximal point algorithm for generalized quasi-variational-like inclusions[J]. J Comput Appl Math,2000,210:153-165.
[6]  Lou J, He X F, He Z. Iterative methods for solving a system of variational inclusions involving H-η-monotone operators in Banach spaces[J]. Comput Math Appl,2008,55:1532-1541.
[7]  丁协平. 解非线性混合似变分不等式的预测-校正迭代算法(英)[J]. 四川师范大学学报:自然科学版,2003,26(1):1-5.
[8]  丁协平. 解具有伪单调映像的广义混合拟似变分包含的邻近点算法(英)[J]. 四川师范大学学报:自然科学版,2004,27(3):221-227.
[9]  邓方平,丁协平. H-单调算子与广义集值变分包含组[J]. 四川师范大学学报:自然科学版,2005,28(2):149-153.
[10]  Fang Y P, Huang N J, Thompson H B. A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J]. Comput Math Appl,2005,49:365-374.
[11]  Verma R U. Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J]. Appl Math Lett,2006,19:1409-1413.
[12]  Zhang Q B. Generalized implicit variational-like inclusion problems involving G-η-monotone mappings[J]. Appl Math Lett,2007,20:216-221.
[13]  Lan H Y, Cho Y J, Verma R U. Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J]. Comput Math Appl,2006,51:1529-1538.
[14]  Lan H Y. (A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J]. Appl Math Lett,2007,20:571-577.
[15]  Xu H K. Inequalities in Banach spaces with applications[J]. Nonlinear Anal,1991,16(12):1127-1138.
[16]  Nadler S B. Multivalued contraction mapping[J]. Pacific J Math,1969,30:475-488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133