Wang M L, Li X Z, Zhang J L. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J]. Phys Lett,2008,372A:417-423.
[2]
Zhang S, Tong J L, Wang W. A generalized (G′/G)-expansion method for the mKdV equation with variable coefficients[J]. Phys Lett,2008,372A:2254-2257.
[3]
Aslan I, Ozis T. Analytic study on two nonlinear evolution equations by using the (G′/G)-expansion method[J]. Appl Math Comput,2009,209:425-429.
[4]
Aslan I, Ozis T. On the validity and reliability of the (G′/G)-expansion method by using higher-order nonlinear equations[J]. Appl Math Comput,2009,211:531-536.
[5]
Aslan I. Generalized solitary and periodic wave solutions to a (2+1)-dimensional Zakharov-Kuznetsov equation[J]. Appl Math Comput,2010,217(4):1421-1429.
[6]
Li Z L. Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by (G′/G)-expansion method[J]. Appl Math Comput,2010,217(4):1398-1403.
[7]
Liu X, Tian L X, Wu Y H. Application of (G′/G)-expansion method to two nonlinear evolution equations[J]. Appl Math Comput,2010,217(4):1376-1384.
[8]
Degasperis A, Procesi M. Asymptotic integrability[C]//Degasperis A, Gaeta G. Symmetry and Perturbation Theory. Singapore:World Scientific,1999.
[9]
Cammassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett,1993,71:1661-1664.
[10]
[1] Parkes E J, Duffy B R. Travelling solitarywave solutions to a compound KdV-Burgers equation[J]. Phys Lett,1997,229A:217-220.
[11]
Lei Y. Exact solutions of nonlinear equations[J]. Phys Lett,1999,260A:55-59.
[12]
Parkes E J, Duffy B R. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Phys Lett,2001,295A:280-286.
[13]
Sirendaoreji, Sun J. Auxiliary equation method for solving nonlinear partial differential equations[J]. Phys Lett,2003,309A:387-396.
[14]
Adomian G. Explicit solutions of nonlinear partial differential equations[J]. Appl Math Comput,1997,88:117-126.
[15]
He J H. Variational iteration method for autonomous ordinary differential systems[J]. Appl Math Comput,2000,118:115-123.
[16]
He J H. Variational iteration method: Some recent results and new interpretations[J]. J Comput Appl Math,2007,207:3-17.
[17]
He J H, Wu X H. Variational iteration metod: New development and applications[J]. Comput Math Appl,2007,54:881-894.
[18]
Bekir A. Application of the (G′/G)-expansion method for nonlinear evolution equations[J]. Phys Lett,2008,372A:3400-3406.
[19]
Zhang J, Wei X L, Lu Y J. A generalized (G′/G)-expansion method and its applications[J]. Phys Lett,2008,372A:3653-3658.
[20]
Degasperis A, Holm D D, Hone A N W. A new integrable equation with peakon solitons[J]. Theor Math Phys,2002,133:1461-1472.
[21]
Degasperis A, Holm D D, Hone A N W. Integrable and non-integrable equation with peakons[C]//Proceedings of the Workshop Nonlinear Physics: Theory and Experiment (II),2003:37-43.
[22]
Zhou Y. Blow-up phenomenon for the integrable Degasper-Procesi equation[J]. Physics Letters,2004,328A:157-162.
[23]
Wazwaz A M. Solitary wave solutions to the modified forms of the Degasperis-Procesi and Camassa-Holm Equations[J]. Physics Letter,2006,352A:500-504.
[24]
Wazwaz A M. New solitary wave solutions to the modified forms of the Degasperis-Procesi and Camassa-Holm Equations[J]. Appl Math Comput,2007,186:130-141.
[25]
Zhang B, Li S, Liu Z. Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations[J]. Physics Letter,2008,372A:1867-1872.