全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有慢衰减初值的双重退化抛物方程的解的生命跨度

, PP. 740-745

Keywords: 生命跨度,双重退化抛物方程,慢衰减初值,爆破

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一类带有强非线性源的双重退化抛物方程ut=div(|um|p-2ul)+uq,(x,t)∈RN×(0,T),其中,N≥1,p>2,m,l,q>1的Cauchy问题的正解的性质.利用能量和上下解方法,得到了爆破解的生命跨度的上下界估计.

References

[1]  Mu C L, Li Y H, Wang Y. Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values[J]. Nonlinear Anal:RWA,2010,11:198206.
[2]  Huang Q, Mochizuki K, Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values[J]. Hokkaido Math J,1998,27:393407.
[3]  Lee T Y, Ni W M. Global existence, large time behavior and life span on solutions of a semilinear parabolic Cauchy problem[J]. Trans Am Math Soc,1992,333:365378.
[4]  Levine H A. The role of critical exponents in blowup theorem[J]. SIAM Rev,1990,32:262288.
[5]  Li Y H, Mu C L. Life span and a new critical exponent for a degenerate parabolic equation[J]. J Diff Eqns,2004,207:392406.
[6]  李玉环,张毅. 关于一类退化抛物方程的第二临界指数[J]. 四川大学学报:自然科学版,2006,43(2):253255.
[7]  Qi Y W. The critical exponents of parabolic equations and blowup in RN[J]. Proc Roy Soc Edin,1998,A128:123136.
[8]  Winkler M. A critical exponent in a degenerate parabolic equation[J]. Math Meth Appl Sci,2002,25:911925.
[9]  Cianci P, Martynenko A V, Tedeev A F. The blowup phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source[J]. Nonlinear Anal:TMA,2010,73:23102323.
[10]  Zhao J N. On the Cauchy problem and initial traces for the evolution pLaplacian equations with strongly nonlinear sources[J]. J Diff Eqns,1995,121:329383.
[11]  Mu C L, Zeng R, Zhou S M. Life span and a new critical exponent for a doubly degenerate parabolic equation with slow decay initial values[J]. J Math Anal Appl,2011,384(2):181191.
[12]  Liang Z L, Zhao J. Localization for the evolution PLaplacian equation with strongly nonlinear source term[J]. J Diff Eqns,2009,246:391407.
[13]  Tedeev A F. The interfance blowup phenomenon and local estimate for doubly degenerate parabolic equations[J]. Appl Anal,2007,86:755782.
[14]  Li Y H, Mu C L. Life span and large time behavior for a degenerate parabolic equation[J]. Dyn Contin Discrete Impuls Syst:Appl Algorithms,2011,B18:111121.
[15]  Mi Y S, Mu C L, Zeng R. Secondary critical exponent, large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values[J]. Z Angew Math Phys,DOI:10.1007/s0003301101307.
[16]  Mochizuki K, Suzuki R. Critical exponent and critical blowup for quasilinear parabolic equation[J]. Irsael J Math,1997,98:141156.
[17]  Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values[J]. Nonlinear Anal,2000,39:3345.
[18]  DiBenedetto E. Degenerate Parabolic Equations[M]. New York:SpringerVerlag,1993.
[19]  Wu Z Q, Zhao J N, Yin J X, et al. Nonlinear Diffusion Equations[M]. New Jersey:World Scientific Publishing,2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133