全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性Mate-Nevai型离散不等式及其应用

, PP. 677-683

Keywords: 非线性离散不等式,和分-差分方程,未知函数估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gronwall不等式及其各种线性、非线性推广是研究微分方程和差分方程解的存在性、有界性、唯一性和稳定性的重要工具.而离散的Gronwall不等式在验证微分方程与积分方程数值解的收敛性方面有着十分的重要作用.研究了一类非线性的Mate-Nevai型离散不等式,在B.G.Pachpatte(TamkangJMath,2001,32217-223.)的结果的基础上增加了二元函数项,该不等式含有两个无穷和项和一个非常数项.放弃对函数的单调性要求,通过将求和号外的函数作常量化,利用函数的单调化技巧和函数的次可乘性,给出了不等式中的未知函数的估计,进而将所得的不等式的估计用于研究一类非线性和分-差分方程解的估计.

References

[1]  Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J]. Ann Math,1919,20:292-296.
[2]  Bellman R. The stability of solutions of linear differential equations[J]. Duke Math J,1943,10:643-647.
[3]  Bihari I. A generalization of lemma of Bellman and its application to uniqueness problems of differential equations[J]. Acta Math Acad Sci Hung,1956,7:81-94.
[4]  Lipovan O. A retarded Gronwall-like inequality and its applications[J]. J Math Anal Appl,2000,252:389-401.
[5]  Agarwal R P, Deng S, Zhang W. Generalization of a retarded Gronwall-like inequality and its applications[J]. Appl Math Comput,2005,165:599-612.
[6]  Mate A, Nevai P. Sublinar perturbations of differential equations y(n)=0 and of the analogous difference equation[J]. J Diff Eqns,1984,52:234-257.
[7]  Pachpatte B G. On some fundamental finite difference inequalities[J]. Tamkang J Math,2001,32:217-223.
[8]  Pachpatte B G. On some finite difference inequalities in two independent variables[J]. J Math Anal Appl,2001,254(2):587-598.
[9]  Blandzi E M, Popenda J, Agarwal R P. Best possible Gronwall inequalities[J]. Math Comput Model,1997,26(3):1-8.
[10]  Lü T, Huang Y. A generalization of discrete Gronwall inequality and its application to weakly singular volterra integral equality of the second kind[J]. J Math Anal Appl,2003,282:56-62.
[11]  Udpin S, Niamsup P. New discrete type inequalities and global stability of nonlinear difference equations[J]. Appl Math Lett,2009,22:856-859.
[12]  Ma Q H. Some new nonlinear Volterra–Fredholm-type discrete inequalities and their applications[J]. J Comupt Appl Math,2008,216:451-466.
[13]  Ma Q H. Estimates on some power nonlinear Volterra–Fredholm type discrete inequalities and their applications[J]. J Comupt Appl Math,2010,233:2170-2180.
[14]  吴宇. 关于一类弱奇性Volterra积分不等式的注记[J]. 四川师范大学学报:自然科学版,2008,31(5):534-537.
[15]  王毅,李树勇. 一类时滞偏微分方程的不变集与全局吸引性[J]. 四川师范大学学报:自然科学版,2009,32(2):157-160.
[16]  Pachpatte B G. Inequalities for Differential and Integral Equations[M]. New York:Academic Press,1998.
[17]  Yang E H, Tan M C. Pointwise estimate of bounded solutions to some discrete inequalities involving infinite summation[J]. Ann Diff Eqns,2008,24(2):215-223.
[18]  Pachpatte B G. Inequalities applicable in the theory of finite difference equations[J]. J Math Anal Appl,1998,222:438-459.
[19]  Meng F, Li W. On some new nonlinear discrete inequalities and their applications[J]. J Comput Appl Math,2003,158:407-417.
[20]  Deng S. Nonlinear discrete inequalities with two variables and their applications[J]. Appl Math Comput,2010,217:2217-2225.
[21]  周俊. LV型电子商贸网站竞争系统的全局结构[J]. 四川师范大学学报:自然科学版,2009,32(3):276-280.
[22]  王五生. 一类非连续函数积分不等式中未知函数的估计[J]. 四川师范大学学报:自然科学版,2011,34(1):43-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133