Ahmad S. An existence theorem for periodically perturbed conservative systems[J]. Mich Math J,1973,20(2):385-392.
[2]
Brown K J. Nonlinear boundary value problems and a globle inverse function theorem[J]. Annali Mat Pura Appl,1975,106(5):205-214.
[3]
Brown K J, Lin S S. Periodically perturbed conservative systems and a global inverse function theorem[J]. Nonlinear Analysis,1980,24(4):193-201.
[4]
Lazer A C, Sanchez D A. On periodically perturbed conservative systems[J]. Mich Math J,1969,16(8):193-200.
[5]
Lazer A C. Application of a lemma on bilinear forms to a problem in nonlinear oscillations[J]. Proc Am Math Soc,1972,33(10):89-94.
[6]
Leach D E. On Poincare’s peturbation theorem and a theorem of W. S. Lund[J]. J Diff Eqns,1970,7(8):34-53.
[7]
Feng Y Q, Shen Z H. The existence and uniquence of the solution for the Newtonian equation[J]. Key Engineering Materials,2010,426(1):334-339.
[8]
Zampieri G. Diffeomorphisms with Banach space domains[J]. Nonlinear Analysis,1992,19(4):923-932.
[9]
Wang W X, Shen Z H. The basin of attraction in Banach space and its applications[J]. Journal of Nanjing University Mathematical Biquarterly,2005,22(1):45-51.
[10]
Lakshmikantham V, Leeda S. Differential and Integral Inequalities:II[M]. New York:Academic Press,1969.
[11]
王文,沈祖和. 一类半线性方程周期边值问题[J]. 应用数学,2006,19(1):94-100.
[12]
Li W G. Periodic solutions for 2kth order ordinary differential equations with resonance[J]. J Math Anal Appl,2001,259(1):157-167.