全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粘性不可压缩流动的投影稳定化方法

, PP. 625-631

Keywords: 不可压缩,投影,雷诺数

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用压力投影和梯度投影稳定化方法的思想,对高雷诺数下的粘性不可压缩流动的最低阶元给出了一种稳定的有限元格式.该格式不但绕开了inf-sup条件的限制,并且克服了当雷诺数很大时造成的不稳定性.利用不动点原理证明了解的存在唯一性,给出了误差估计.误差结果表明,该方法能达到最优精度.

References

[1]  Brezzi F, Fortin M. Mixed and hybrid finite element methods[C]//Springer Series in Computational Mathematics. New York:Springer-Verlag,1991.
[2]  Zhou T X, Feng M F. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Mathematics of Computation,1993,60:531-543.
[3]  Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J]. Mathematics of Computation,1989,52:495-508.
[4]  Brook A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J]. Computer Methods in Applied Mechanics and Engineering,1982,32:199-259.
[5]  Layton W J. A connection between subgrid scale eddy viscosity and mixed methods[J]. Applied Mathematics and Computation,2002,133:147-157.
[6]  Dohrman C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections[J]. International Journal for Numerical Methods in Fluids,2004,46:183-201.
[7]  He Y N, Li J, Chen Z X. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Applied Numerical Mathematics,2008,58(10):1503-1514.
[8]  Li J, He Y N, Chen Z X. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering,2007,197(1-4):22-35.
[9]  Burman E. Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem[J]. Numerical Methods for Partial Differential Equations,2008,24(1):127-143.
[10]  Qin Y M, Feng M F, Zhou T X. A new full discrete stabilized viscosity method for transient Navier-Stokes equations[J]. Applied Mathematics and Mechanics:English Edition,2009,30(7):839-852.
[11]  Luo Y, Feng M F. Discontinuous element pressure gradient stabilizations for compressible Navier-Stokes equations based on local projections[J]. Applied Mathematics and Mechanics:English Edition,2008,29(2):171-183.
[12]  骆艳,冯民富. Stokes方程的压力梯度局部投影间断有限元法[J]. 计算数学,2008,30(1):25-36.
[13]  Codina R, Blasco J. A finite element formulaton for the Stokes problem allowing equal velocity-pressure interpolation[J]. Computer Methods in Applied Mechanics and Engineering,1997,143:373-391.
[14]  Codina R, Blasco J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J]. Computer Methods in Applied Mechanics and Engineering,2000,182:277-300.
[15]  Lube F, Rapin G, Lowe J. Local projection stabilizations for incompressible flows: Equal-order vs. inf-sup stable interpolation[J]. Electronic Transactions on Numerical Analysis,2008,32:106-122.
[16]  Braack M, Burman E. Local projection stabilization for the Oseen problem and its interpretion as a variational multiscale method[J]. SIAM Journal on Numerical Analysis,2006,43(6):2544-2566.
[17]  Matthies G, Skrypacz P, Tobiska L. A unified convergence analysis for local projection stabilisations applied to the Oseen problem[J]. Mathematical Modeling and Numerical Analysis,2007,41(4):713-742.
[18]  Braack M, Burman E, John V, et al. Stabilized finite element methods for the generalized Oseen problem[J]. Computer Methods in Applied Mechanics and Engineering,2007,196:853-866.
[19]  Ge Z H, Feng M F, He Y N. A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations[J]. Applied Mathematics and Computation,2008,202(2):700-707.
[20]  覃燕梅. 不可压缩Navier-Stokes方程的压力投影两重网格稳定化人工粘性方法[J]. 内江师范学院学报,2009,24(10):36-39.
[21]  张莉,冯民富. Navier-Stokes方程的低阶稳定化有限元方法[J]. 四川师范大学学报:自然科学版,2009,46(4):886-892.
[22]  [1] Girault V, Raviart P. Finite Element Methods for the Navier-Stokes Equations[M]. Berlin:Springer-Verlag,1986.
[23]  Bochev P B, Dohrman C R, Gunzburger M D. Stabilization of low-order mixed finite elements for the Stokes equations[J]. SIAM Journal on Numerical Analysis,2006,44:82-101.
[24]  Li J, He Y N. A stabilized finite element method based on two local Guass integrations for the Stokes equations[J]. Journal of Computational and Applied Mathematics,2008,214(1):58-65.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133