全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hilbert空间中变分不等式组的两步投影算法

, PP. 615-620

Keywords: 变分不等式组,r-强单调映射,松弛-(γ,r)-余强制

Full-Text   Cite this paper   Add to My Lib

Abstract:

变分不等式解的迭代算法是变分不等式理论的重要内容之一,而投影方法是研究变分不等式解的迭代算法的重要方法,已经有着广泛的研究和应用.主要研究Hilbert空间中变分不等式组的近似解问题,给出了变分不等式组解的两步投影算法,在映象T松弛-(γ,r)-余强制的假设条件下,证明了两步投影算法所产生的迭代序列收敛于变分不等式组的解.所获得的结果推广和改进了文献中的一些主要结果.

References

[1]  Verma R U. Projection methods, algorithms and a new system of nonlinear variational inequalities[J]. Comput Math Appl,2001,41:1025-1031.
[2]  Qiu Y Q, Liu L W. A new system of generalized quasi-variationl-like inclusions in Hilbert spaces[J]. Comput Math Appl,2010,59:1-8.
[3]  Verma R U. General convergence analysis for two-step projection method and applications to variational problems[J]. Appl Math Lett,2005,18(11):1286-1292.
[4]  Chang S S, Josephlee H W, Chan C K. Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces[J]. Appl Math Lett,2007,20:329-334.
[5]  Huang Z Y, Noor M A. An explicit projection method for a system of nonlinear variational inequalities with different (γ,r)-cocoercive mappings[J]. Appl Math Lett,2007,190:356-361.
[6]  Verma R U. Generalized system for relaxed cocoercive variational inequalities and projection method[J]. J Optim Theory Appl,2004,121(1):203-210.
[7]  Farouq N E L. Pseudomonotone variational inequalities convergence of the auxiliary problem method[J]. J Optim Theory Appl,2001,111(2):305-326.
[8]  Verma R U. A class of quasivariational inequalities involving cocoercive mapping[J]. Advances in Nonlinear Variational Inequalities,1999,2(2):1-12.
[9]  Verma R U. Generalized class of partial relaxed monotonicity and its connections[J]. Advances in Nonlinear Variational Inequalities,2004,7(2):1-12.
[10]  Verma R U. Nonlinear implicit variational inequalities involving partially relaxed pseudomonotone mappings[J]. Comput Math Appl,2003,46:1703-1709.
[11]  Verma R U. A new class of iterative algorithms for approximation-solvability of nonlinear variational inequalities[J]. Comput Math Appl,2001,41:505-512.
[12]  Zhu D, Marcotte P. New class of generalized monotonicity[J]. J Optim Theory Appl,1995,87(2):457-471.
[13]  Noor M A, Noor K I. Projection algorithms for solving a system of general variational inequalities[J]. Nonlinear Analysis,2009,70:2700-2706.
[14]  Verma R U. Partial relaxed monotonicity and general auxiliary problem principle with applications[J]. Appl Math Lett,2003,16:791-796.
[15]  Noor M A. An implicit method for mixed variational inequalities[J]. Appl Math Lett,1998,11(4):109-113.
[16]  Verma R U. A new relaxed proximal point procedure and applications to nonlinear variational inclusions[J]. Comput Math Appl,2009,58:1631-1635.
[17]  Luo X P, Huang N J. A new class of variational inclusions with B-monotone operators in Banach spaces[J]. J Comput Appl Math,2010,233:1888-1896.
[18]  He X H, Zhou Y S. An iterative method for a system of generalized mixed quasi-variationl inclusions with (A,η)-monotone mappings[J]. Appl Math Comput,2010,215:4256-4262.
[19]  Kazmi K R, Bhat M I, Naeem A. An iterative algorithm based on M-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces[J]. J Comput Appl Math,2009,233:361-371.
[20]  Luo X P, Huang N J. (H,)-η-monotone operators in Banach spaces with an application to variational inclusions[J]. Appl Math Comput,2010,216:1131-1139.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133