Gao S, Lenstra H W. Optimal normal bases\[J\]. Design,Codes and Cryptography,1992(2):315-323.
[7]
Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF(pn)\[J\]. Discrete Appl Math,1989,22:149-161.
[8]
Lidl R, Niederreiter H. Bit serial Reed-Solomon encoders\[J\]. IEEE Trans Info Theory,1982,28:869-874.
[9]
Liao Q Y, Sun Q. Normal bases and their dual-bases over finite fields\[J\]. Acta Mathematica Sinica:English Series,2006,22(3):845-848.
[10]
Liao Q Y, Feng K Q. On the complexity of the normal bases via prime Gauss period over finite fields\[J\]. J Syst Sci Complexity, 2009,22:9-21.
[11]
Beth T. Generalizing the discrete fourier transform\[J\]. Discrete Math,1985,56:95-100.
[12]
Maximov A, Hell M, Maitra S. Plateaued rotation symmetric Boolean functions on odd number of variables\[C\]//Michon J F, Valarcher P, Yunès J B. First Workshop on Boolean Functions:Cryptography and Applications, BFCA’05, LIFAR, Univ Rouen, France,2005:83-104.
[13]
Stanica P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties\[J\]. Disc Appl Math,2002.
[14]
Cusick T W, Stanica P. Fast evaluation, Weights and nonlinearity of rotation symmetric functions\[J\]. Discrete Math,2002,258:289-301.
[15]
Xia T, Seberry J, Pieprzyk J, et al. Homogeneous bent functions of degree n in 2n variables do not exist for n>3\[J\]. Discrete Appl Math,2004,142(1/3):127-132.
[16]
Jungnickel D, Menezes A J, Vanstone S A. On the number of self-dual bases of GF(qm) over GF(q)\[J\]. American Mathematical Society,1990,109(1):23-29.
[17]
Lidl R, Niederreiter H. Finite Fields and Their Applications\[M\]. 2nd. Cambrige:Cambrige University Press,1994.
[18]
Geisehnann W, Golhnann D. Symmetry and duality in normal basis multiplication\[C\]//Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science. Berlin:Springer-Verlag,1989,357:230-238.
[19]
Difie W, Helhnan M. New directions in cryptography\[J\]. IEEE Trans Inform Theory,1976,22:44-654.
[20]
Fumy W. Othogonal transform encoding of cyclic codes\[C\]//Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Comput Science. Berlin:Springer-Verlag,1986,229:131-134.
[21]
Filiol E, Fontaine C. Highly nonlinear balanced Boolean functions with a good correlation-immunity\[C\]//Advances in Cryptology-EUROCRYPT’98. Lecture Notes in Computer Science. Berlin:Springer-Verlag,1998,1403:475-488.