全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二元域上对称循环矩阵的非退化性

, PP. 422-426

Keywords: 有限域,正规基,迹双线性型,迹映射,布尔函数,循环矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

齐次旋转对称布尔函数与F2n在F2上的一类特殊正规基有着密切的联系,这类正规基的存在性依赖于二元域F2上n×n对称循环矩阵的可逆性.利用有限域上多项式的性质给出了F2上一类n×n对称循环矩阵的行列式计算公式,并由此得到一类特殊的可逆对称循环矩阵.

References

[1]  Menezes A J. Applications of Finite Fields\[M\]. Boston:Kluwer Academic Publishers,1993.
[2]  Wan Z X. Lectures on Finite Fields and Galois Rings\[M\]. Singapore:World Scientific,2003.
[3]  彭天兰. r-置换因子循环矩阵的性质\[J\]. 数学理论与应用,2010,30(1):33-37.
[4]  刘兴祥,郝小琴. 类循环矩阵的行列式计算及其应用之一\[J\]. 延安大学学报:自然科学版,2009,28(4):17-18.
[5]  王志峰,欧庆于,严承华. 二元有限域正规基乘法矩阵快速算法研究与实现\[J\]. 计算机与数字工程,2010,38(1):21-23.
[6]  Gao S, Lenstra H W. Optimal normal bases\[J\]. Design,Codes and Cryptography,1992(2):315-323.
[7]  Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF(pn)\[J\]. Discrete Appl Math,1989,22:149-161.
[8]  Lidl R, Niederreiter H. Bit serial Reed-Solomon encoders\[J\]. IEEE Trans Info Theory,1982,28:869-874.
[9]  Liao Q Y, Sun Q. Normal bases and their dual-bases over finite fields\[J\]. Acta Mathematica Sinica:English Series,2006,22(3):845-848.
[10]  Liao Q Y, Feng K Q. On the complexity of the normal bases via prime Gauss period over finite fields\[J\]. J Syst Sci Complexity, 2009,22:9-21.
[11]  Beth T. Generalizing the discrete fourier transform\[J\]. Discrete Math,1985,56:95-100.
[12]  Maximov A, Hell M, Maitra S. Plateaued rotation symmetric Boolean functions on odd number of variables\[C\]//Michon J F, Valarcher P, Yunès J B. First Workshop on Boolean Functions:Cryptography and Applications, BFCA’05, LIFAR, Univ Rouen, France,2005:83-104.
[13]  Stanica P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties\[J\]. Disc Appl Math,2002.
[14]  Cusick T W, Stanica P. Fast evaluation, Weights and nonlinearity of rotation symmetric functions\[J\]. Discrete Math,2002,258:289-301.
[15]  Xia T, Seberry J, Pieprzyk J, et al. Homogeneous bent functions of degree n in 2n variables do not exist for n>3\[J\]. Discrete Appl Math,2004,142(1/3):127-132.
[16]  Jungnickel D, Menezes A J, Vanstone S A. On the number of self-dual bases of GF(qm) over GF(q)\[J\]. American Mathematical Society,1990,109(1):23-29.
[17]  Lidl R, Niederreiter H. Finite Fields and Their Applications\[M\]. 2nd. Cambrige:Cambrige University Press,1994.
[18]  Geisehnann W, Golhnann D. Symmetry and duality in normal basis multiplication\[C\]//Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science. Berlin:Springer-Verlag,1989,357:230-238.
[19]  Difie W, Helhnan M. New directions in cryptography\[J\]. IEEE Trans Inform Theory,1976,22:44-654.
[20]  Fumy W. Othogonal transform encoding of cyclic codes\[C\]//Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Comput Science. Berlin:Springer-Verlag,1986,229:131-134.
[21]  Filiol E, Fontaine C. Highly nonlinear balanced Boolean functions with a good correlation-immunity\[C\]//Advances in Cryptology-EUROCRYPT’98. Lecture Notes in Computer Science. Berlin:Springer-Verlag,1998,1403:475-488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133