全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有Beddington-DeAngelis功能反应和脉冲效应的两食饵一捕食者系统的动力学性质

, PP. 325-330

Keywords: 两食饵一捕食者系统,脉冲微分方程,脉冲比较定理,混沌,Floquent理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于害虫综合管理策略,利用脉冲比较定理、Floquent理论及微小扰动法,研究了具有Beddington-DeAngelis功能反应、脉冲比例收获和脉冲常数投放的两食饵一捕食者系统的复杂动力学性质,给出了投放临界值,得到了系统灭绝、持续生存及一食饵种群灭绝其余两种群持续生存的充分条件.数值模拟表明,随着投放量的增加,系统出现倍周期分支、混沌、吸引子危机、半周期分支等复杂的动力学行为.

References

[1]  Bainov D, Simeonov P. Impulsive Differential Equations: Periodic Solutions and Applications[M]. New York: Longman Scientific and Technical Press,1993:26-39.
[2]  陆征一,周义仓. 数学生物学进展[M]. 北京:科学出版社,2005:131-152.
[3]  Xiang Z Y, Song X Y, Zhang F Q. Bifurcation and complex dynamics of a two-prey two-predator system concering periodic biological and chemical control[J]. Chaos, Solitons and Fractals,2008,37:424-437.
[4]  Wang H L, Wang W M. The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect[J]. Chaos, Solitons and Fractals,2008,38(4):1168-1176.
[5]  Chen Y P, Liu Z J, Haque M. Analysis of a Leslie-Gower-type prey-predator model with periodic impulsive perturbations[J]. Commun Nonl Sci Numer Simul,2009,14:3412-3423.
[6]  Song X Y, Hao M Y, Meng X Z. A stage-structured predator-prey model with disturbing pulse and time delays[J]. Applied Mathematical Modelling,2009,33:211-223.
[7]  He M X, Chen F D. Dynamic behaviors of the impulsive periodic multi-species predator-prey system[J]. Comput Math Appl,2009,57:248-265.
[8]  De Bach P. Biological Control of Insect Pests and Weeds[M]. New York:Reinhold,1964.
[9]  Van Lentern J C. Integrated Pest Management in Protected Crops[M]. London:Chapman and Hall,1995.
[10]  Liu B, Zhang Y J, Chen L. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis:Real World Applications,2005,6(2):227-243.
[11]  刘兵,陈兰荪,张玉娟. 基于IPM策略的捕食与被捕食系统的动力学性质[J]. 工程数学学报,2005,22(1):9-14.
[12]  任庆军,窦霁虹. 具有非单调功能反应和脉冲扰动的捕食系统的分析[J]. 纯粹数学与应用数学,2006,22(4):444-448.
[13]  Zhang S W, Chen L S. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J]. Chaos, Solitons and Fractals,2006,27:237-248.
[14]  Song X Y, Li Y Z. Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect[J]. Chaos, Solitons and Fractals,2007,33:463-478.
[15]  Liu S Q, Zhang J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. J Math Anal Appl,2008,342:446-460.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133