Bainov D, Simeonov P. Impulsive Differential Equations: Periodic Solutions and Applications[M]. New York: Longman Scientific and Technical Press,1993:26-39.
[2]
陆征一,周义仓. 数学生物学进展[M]. 北京:科学出版社,2005:131-152.
[3]
Xiang Z Y, Song X Y, Zhang F Q. Bifurcation and complex dynamics of a two-prey two-predator system concering periodic biological and chemical control[J]. Chaos, Solitons and Fractals,2008,37:424-437.
[4]
Wang H L, Wang W M. The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect[J]. Chaos, Solitons and Fractals,2008,38(4):1168-1176.
[5]
Chen Y P, Liu Z J, Haque M. Analysis of a Leslie-Gower-type prey-predator model with periodic impulsive perturbations[J]. Commun Nonl Sci Numer Simul,2009,14:3412-3423.
[6]
Song X Y, Hao M Y, Meng X Z. A stage-structured predator-prey model with disturbing pulse and time delays[J]. Applied Mathematical Modelling,2009,33:211-223.
[7]
He M X, Chen F D. Dynamic behaviors of the impulsive periodic multi-species predator-prey system[J]. Comput Math Appl,2009,57:248-265.
[8]
De Bach P. Biological Control of Insect Pests and Weeds[M]. New York:Reinhold,1964.
[9]
Van Lentern J C. Integrated Pest Management in Protected Crops[M]. London:Chapman and Hall,1995.
[10]
Liu B, Zhang Y J, Chen L. The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management[J]. Nonlinear Analysis:Real World Applications,2005,6(2):227-243.
Zhang S W, Chen L S. A study of predator-prey models with the Beddington-DeAnglis functional response and impulsive effect[J]. Chaos, Solitons and Fractals,2006,27:237-248.
[14]
Song X Y, Li Y Z. Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect[J]. Chaos, Solitons and Fractals,2007,33:463-478.
[15]
Liu S Q, Zhang J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. J Math Anal Appl,2008,342:446-460.