全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ginzburg-Landau方程的精确亮孤子与暗孤子解

, PP. 309-312

Keywords: Ginzburg-Landau方程,拟设函数,孤子,广田方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类在非线性光学中描述光脉冲在光纤传播的具三次增益效应项的复Ginzburg-Landau型方程,应用广田双线性函数方法和直接拟设函数技巧,成功的获得了该方程在系数满足一定关系的限制条件下的精确解—亮孤子与暗孤子解.研究结果表明,广田双线性函数方法和直接拟设函数技巧在求解非线性发展方程的孤子解时,是一种行之有效的方法.

References

[1]  Cariello F, Tabor M. Painlev’e expansions for non-integrable evolution equations[J]. Physica,1989,D39(1):77-94.
[2]  Roger T. Infinte-Dimensional Dynamical Systems in Mechanics and Physics[M]. 2nd Ed. Berlin:Springer-Verlag,1990.
[3]  Blennerhassett P J. On the generation of waves by wind[J]. Philos Trans Roy Soc London,1980,A298: 451-494.
[4]  Moon H T, Huerre P, Redekopp L G. Three frequency motion and chaos in Ginzburg-Landau equations[J]. Phys Rev Lett,1982,49(7):485-460.
[5]  Sakaguchi H, Malomed B A. Stable localized pulses and zigzag strips in a two dimensional diffractive-diffusive Ginzburg-Landau equation[J]. Physica,2001,D159(1/2):91-100.
[6]  Fang F, Yan X. Stability of chirped bright and dark soliton-like solutions of the cubic complex Ginzburg-Landau equation with variable coefficients[J]. Optics Communications,2006,268(2):305-310.
[7]  Abdul-Majid W. Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg-Landau equation[J]. Appl Math Lett,2006,19(10):1007-1012.
[8]  Liu W Y, Yu W J, Chen L D. Variational principles for Ginzburg-Landau equation by He’s semi-inverse method[J]. Chaos,Solitons and Fractals,2007,33(5):1801-1803.
[9]  González J A, Bellorín A, Guerrero L E. Kink-soliton explosions in generalized Klein-Gordon equations[J]. Chaos,Solitons and Fractals,2007,33(1):143-155.
[10]  Mancas S, Choudhury S R. Traveling wave trains in the complex cubic-quintic Ginzburg-Landau equation[J]. Chaos,Solitons and Fractals,2006,28(3):834-843.
[11]  Mancas S, Choudhury S R. Bifurcations and competing coherent structures in the cubic-quintic Ginzburg-Landau equation I:Plane wave (CW) solutions[J]. Chaos,Solitons and Fractals,2006,27(5):1256-1271.
[12]  Shi Y Q, Dai Z D, Li D L. Application of exp-function method for 2D cubic-quintic Ginzburg-Landau equation[J]. Appl Math Comput,2009,210(1):269-275.
[13]  Huo Z H, Jia Y L. Global well-posedness for the generalized 2D Ginzburg-Landau equation[J]. J Diff Eqns,2009,247(1):260-276.
[14]  Stefan C M, Roy S C. Snake solitons in the cubic-quintic Ginzburg-Landau equation[J]. Math Comput Simul,2009,80(1):73-82.
[15]  李向正,张金良,王明亮. Ginzburg-Landau方程的一种解法[J]. 河南科技大学学报:自然科学版,2004,25(6):78-81.
[16]  邱春,贾多杰,高秀云,等. 复Ginzburg-Landau方程的新行波解[J]. 西北师范大学学报:自然科学版,2008,44(1):38-42.
[17]  李自田. Ginzburg-Landau方程的周期波解与孤子解[J]. 曲靖师范学院学报,2008,27(6):30-33.
[18]  周钰谦,张健,刘倩. 耦合Klein-Gordon-Schrodinger方程显示解的统一构造[J]. 四川师范大学学报:自然科学版,2006,29(2):166-170.
[19]  蒋毅,蒲志林,孟宪良. 三维空间中Klein-Gordon-Zakharov方程的精确解[J]. 四川师范大学学报:自然科学版,2007,30(5):262-265.
[20]  夏莉. (2+1)维BBM方程的精确解[J]. 西南师范大学学报:自然科学版,2007,32(3):40-42.
[21]  刘常福,戴正德. Zakharov-Kuznetsov方程的精确分式解[J]. 西南大学学报:自然科学版,2008,30(9):1-5.
[22]  刘震江,戴正德,李自田. Sine-Gordon方程的周期孤立波解[J]. 西南大学学报:自然科学版,2008,30(9):33-36.
[23]  李春梅,唐生强,黄文韬,等. 一类广义Camassa-Holm方程的孤立尖波,孤子类解和周期解[J]. 四川师范大学学报:自然科学版,2009,32(5):572-575.
[24]  李自田. 一类mKP方程的新精确周期解和绞结解[J]. 西南师范大学学报:自然科学版,2010,35(6):25-29.
[25]  李自田. PKP方程的精确周期解和双周期解[J]. 山西大学学报:自然科学版,2010,33(2):166-168.
[26]  刘倩,周钰谦. 二维Klein-Gordon-Zakharov方程新孤波解的构造[J]. 四川师范大学学报:自然科学版,2010,33(3):335-338.
[27]  帅鲲,蒲志林. 三维空间中Zakharov方程的精确解[J]. 四川师范大学学报:自然科学版,2010,33(4):433-436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133