全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泛函积分与sine-Gordon-Thirring模型的统计平均值

, PP. 221-225

Keywords: 泛函积分,杂质耦合sine-Gordon-Thirring模型,统计平均值,图形表示

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据泛函积分方法研究了杂质耦合sine-Gordon-Thirring模型的统计物理性质,通过辅助玻色场技巧推导了弱耦合模型的有效势,由泛函行列式微扰展开获得了模型的自由能.另外,在弱耦合情况下计算了两个杂质和凝聚项的4阶统计平均值,还给出了有效势和统计平均值的图形表示.

References

[1]  Faddeev L D, Popov V N. Feynaman diagrams for Yang-Mills fields\[J\]. Phys Lett,1967,B256(1):30-31.
[2]  Faddeev L D, Popov V N. Covariant quantization of gravitation fields\[J\]. Usp Fiz Nauk,1973,111(2):428-438.
[3]  Popov V N. Functional Integrals and Collective Excitations\[M\]. Cambridge:Cambridge University Press,1987:1-20.
[4]  Yan J, Qiu X M. Asymptotic functional integrals and critical temperature of the Dicke model\[J\]. Commun Theor Phys,1996,25(5):237-240.
[5]  颜骏,王顺金. 泛函积分方法于Dicke模型中的临界温度和集体激发谱\[J\]. 量子光学学报,1999, 5(3):145-152.
[6]  Yan J. Functional integrals and collective excitations in Boson-Fermion model\[J\]. Commun Theor Phys,2006,46(5):769-773.
[7]  Yan J. Functional integrals and excitation energy in three-band Hubbard model\[J\]. Commun Theor Phys,2008,49(3):567-570.
[8]  Kersting N, Yan J. Elimiation of IR/UR via graviy in noncommutative field theory\[J\]. Mod Phys Lett,2008,A23(32):3341-3348.
[9]  Yan J. Functional integrals and quantum fluctuations on two-dimensional noncommutative space-time\[J\]. Commun Theor Phys,2009,52(3):445-448.
[10]  Yan J. Functional integrals and free energy in sine-Gordon-Thirring model with impurity coupling\[J\]. Commun Theor Phys,2007,48(4):653-657.
[11]  Yan J. Functional integrals and variational-cumulant expansion in sine-Gordon-Thirring model\[J\]. Commun Theor Phys,2008,50(4):893-896.
[12]  邹伯夏,颜骏,王涛. 泛函积分与sine-Gordon-Thirring模型的相结构\[J\]. 四川大学学报:自然科学版,2010,47(1):123-127.
[13]  葛墨林,薛康. 杨-巴克斯特方程\[M\]. 上海:上海科学出版社,1999:35-115.
[14]  黄景宁,徐济仲,熊今涛. 孤子:概念\,原理和应用\[M\]. 北京:高等教育出版,2004:206-222.
[15]  郭柏灵,庞小峰. 孤立子\[M\]. 北京:科学出版社,1987:335-357.
[16]  Yamamoto H. Effect of impurities on the one-dimensional quantum sine-Gordon system(g2 = 4π):Self-consistent t-matrix approximation\[J\]. Phys Lett,1993,A177(1):76-80.
[17]  Yamamoto H. Conductivity of the one-dimensional quantum sine-Gordon system (g2 = 4π ) with impurities\[J\]. J Low Temp Phys,1994,94(1):77-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133