Liu Xiao-gang, Zhang Yuan-ping, Gui Xiang-guan. The multi-fan graphs are determined by their Laplacian spectra\[J\]. Discrete Mathematics,2008,308(18):4267-4271.
[4]
Liu Xiao-gang, Zhang Yuan-ping, Lu Peng-li. One special double starlike graph is determined by its Laplacian spectrum\[J\]. Appl Math Lett,2009,22(4):435-438.
[5]
Zhang Yuan-ping, Liu Xiao-gang, Yong Xue-rong. Which wheel graphs are determined by their Laplacian spectra?\[J\]. Comput Math Appl,2009,58(10):1887-1890.
Cvetkovic D, Doob M, Sachs H. Spectra of Graphs:Theory and Application\[M\]. San Diego:Academic Press,1995.
[9]
Godsil C, Mckay B. Some computational results on the spectral of graphs\[C\]//Proceedings of the Fourth Australian Conference on Combinatin Mathematics Adelaide. Lecture Notes in Mathematics. Berlin:Springer-Verlag,1976.
[10]
Mckay B. On the spectra characterisation of trees\[J\]. Ars Combin,1979,3:219-232.
[11]
Dam E V, Haemers W H. Which graphs are determined by their spectrum?\[J\]. Linear Algebra and Its Applications,2003,373:241-272.
[12]
Shen Xiao-ling, Hou Yao-ping, Zhang Yuan-ping. Graph and some graphs related to are determined by their spectrum\[J\]. Linear Algebra and Its Applications,2005,404:58-68.
[13]
Wang W, Xu C X. Note the T-shape tree is determined by its Laplacian spectrum\[J\]. Linear Algebra and Its Applications,2006,419(1):78-81.