全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非凸集值优化弱有效解的广义最优性条件

, PP. 181-185

Keywords: 非凸集值优化,广义m-阶相依(邻接)导数,非线性标量化泛函,最优性条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

在赋范空间中引入了集值映射的广义m-阶相依(邻接)导数.在没有任何凸性假设下,利用非线性标量化泛函和广义m-阶相依(邻接)导数,获得了无约束集值优化问题弱有效解的最优性必要和充分性条件,所获得的结果推广了文献中的几个结果.

References

[1]  Corley H W. Optimality condition for maximizations of set-valued functions[J]. J Optim Theory Appl,1988,58:1-10.
[2]  Aubin J P, Frankowska H. Set-valued Analysis[M]. Boston:Birkhuser,1990:121-173.
[3]  Chen G Y, Jahn J. Optimality conditions for set-valued optimization problems[J]. Math Methods,1998,48:187-200.
[4]  Jahn J, Khan A A, Zeilinger P. Second-order optimality conditions in set optimalization[J]. J Optim Theory Appl,2005,125:331-347.
[5]  Li S J, Teo K L, Yang X Q. Higher-order optimality conditions for set-valued optimization[J]. J Optim Theory Appl,2008,137(3):533-553.
[6]  Li S J, Chen C R. Higher-order optimality conditions for Henig efficient solutions in set-valued optimization[J]. J Math Anal Appl,2006,323:1184-1200.
[7]  Gong X H, Dong H B, Wang S Y. Optimality conditions for proper efficient solutions of vector set-valued optimization[J]. J Math Anal Appl,2003,284:332-350.
[8]  Certh C, Weidner P. Nonconvex separation theorems and some applications in vector optimization[J]. J Optim Theory Appl,1990,67:297-320.
[9]  Li S J, Yang X Q, Chen G Y. Nonconvex vector optimization of set-valued mappings[J]. J Math Anal Appl,2003,283:337-350.
[10]  Li S J, Teo K L, Yang X Q. Higher-order Mond-Weir duality for set-valued optimization[J]. J Comput Appl Math,2008,217(2):339-349.
[11]  Bao T Q, Mordukhovich B S. Relative Pareto minimizers in multiobjective problems:existence and optimality conditions[J]. Math Program,2010,122:301-347.
[12]  王其林,吴云. 集值优化问题的ε-严有效解的最优性条件[J]. 西南师范大学学报:自然科学版,2006,31(4):40-43.
[13]  杨新民. 关于不可微多目标规划的二阶Mond-Weir对称对偶性[J]. 重庆师范大学学报:自然科学版,2007,24(2):10-11.
[14]  王其林. 一类广义凸集值映射优化问题弱有效解的最优性条件[J]. 四川师范大学学报:自然科学版,2007,30(5):556-559.
[15]  Wang Q L, Li S J. Higher-order weakly generalized adjacent epideri-vatives and applications to duality of set-valued optimization[J]. J Inequal Appl,2009,10(1):1-18.
[16]  Wang Q L, Li S J. Generalized higher-order optimality conditions for set-valued optimization under Henig efficiency[J]. Numer Funct Anal Optim,2009,30(7/8):849-869.
[17]  Wang Q L, Li S J. Higher order sensitivity analysis in nonconvex vector optimization[J]. J Ind Manag Optim,2010,6(2):381-392.
[18]  王其林,刘军. 一个择一定理及其对向量极值问题的应用[J]. 西南师范大学学报:自然科学版,2006,31(2):46-49.
[19]  王其林,李泽民. 一类向量极值问题的最优性条件和Lagrange对偶[J]. 重庆大学学报:自然科学版,2005,28(6):106-109.
[20]  彭再云,龙宪军,王其林. Banach空间中关于一致Lipschitzian映象的一个新结果[J]. 重庆师范大学学报:自然科学版,2009,26(3):5-8.
[21]  王其林. 广义凸集值映射优化问题的强有效解[J]. 重庆交通大学学报:自然科学版,2007,26(4):162-165.
[22]  Khanh P Q, Tuan N D. First and second order optimality conditions using approximations for nonsmooth vector optimization in Banach spaces[J]. J Optim Theory Appl,2006,130(2):289-308.
[23]  Hachimi M, Aghezzaf B. New results on second-order optimality conditions in vector optimization problems[J]. J Optim Theory Appl,2007,135:117-133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133