全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有时滞的脉冲互惠系统的正周期解的存在性

, PP. 186-192

Keywords: 互惠系统,脉冲,周期解,时滞,拓扑度

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用重合度理论中的连续性定理研究了一类具有周期时滞和周期系数的脉冲互惠系统的正周期解的存在性,得到了该系统至少存在一个正周期解的一个易于检验的充分条件,给出了一个具体例子来说明所得结论的可行性和正确性.所得结果在种群动力学研究领域,特别是互惠系统研究领域中具有理论和现实的应用价值,该结果是对前人研究具有时滞的互惠系统的有益补充.

References

[1]  Chen L S. Mathematical Ecological Model and the Research Methods[M]. Beijing:Scientific Press,1988.
[2]  Meng X Z, Wei J J. Stability and bifurcation of mutual system with time delay[J]. Chaos,Solitons and Fratcal,2001,21:729-740.
[3]  Murray J D. Mathematical Biology[M]. New York:Springer-Verlag,1989.
[4]  Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin:Springer-Verlag,1997.
[5]  Lin G J, Hong Y G. Nonlinear Analysis:Real World Applications,2009,10:1589-1600.
[6]  Zhang Z Q, Tian T S. Multiple periodic solutions for a generalized predatoe prey system with exploited terms[J]. Nonlinear Analysis:Real World Applications,2008,9:26-39.
[7]  Fan G H, Li Y K. Existence of positive periodic solutions for a periodic logistic equation[J]. Appl Math Comput,2003,139:311-321.
[8]  Hu H X, Teng Z D, Jiang H J. On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls[J]. Nonlinear Analysis:Real World Applications,2009,10(3):1803-1815.
[9]  Fan G H, Li Y K. Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects[J]. J Comput Appl Math,2009,15(2):544-555.
[10]  Zhang Z Q, Wang Z C. Periodic solution for a nonautonomous predator prey system with diffusion and time delay[J]. Hiroshima Mathematical Journal,2001,31:371-381.
[11]  Liu Z J, Chen L S. Periodic solution of a two-species competitive system with toxicant and birth pulse[J]. Chaos,Solitons and Fratcal,2007,32:1703-1712.
[12]  Jin Z, Ma Z E, Han M A. The existence of periodic solutions of the n-species Lotka-Volterra competition system with impulsive[J]. Chaos,Solitons and Fratcal,2004,22:181-188.
[13]  Laksmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equaqtions[M]. Singapore:World Scientific,1989.
[14]  Meng X Z, Chen L S. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay[J]. J Math Anal Appl,2008,339:125-145.
[15]  Liu Z J, Tan R H, Chen L S. Global stability in a periodic delayed predator-prey system[J]. Appl Math Comput,2007,186:389-403.
[16]  Ding W, Han M A. Dynamic of a non-autonomous predator-prey system with infinite delay and diffusion[J]. Comput Math Appl,2008,56:1335-1350.
[17]  任丽萍,李波. 具有Holling III型功能性捕食模型的定性分析[J]. 四川师范大学学报:自然科学版,2009,32(6):757-762.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133