全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解广义混合平衡问题组的迭代算法

, PP. 143-149

Keywords: 广义混合平衡问题组,广义Wiener-Hopf方程问题组,迭代算法,Hilbert空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

在实Hilbert空间中引入和研究了包含非单调集值映象的一类新的广义混合平衡问题组的迭代算法,研究了广义Wiener-Hopf方程问题组,证明了它与广义混合平衡问题组的等价性.利用广义Wiener-Hopf方程问题组的不动点形式,提出和分析了求解广义混合平衡问题组的新的迭代算法.在此基础上,还证明了由算法生成的迭代序列强收敛于广义混合平衡问题组的解.得到的结果是新的,并且统一和推广了这一领域的最近结果.

References

[1]  Moudafi A, Théra M. Proximal and dynamical approaches to equilibrium problem\[C\]//Lecture Notes in Economics and Mathematical Systems. Berlin:Springer-Verlag,1999,477:187-201.
[2]  Moudafi A. Mixed equilibrium problems:Sensitivity analysis and algorithmic aspect\[J\]. Comput Math Appl,2002,44:1099-1108.
[3]  Huang N J, Lan H Y, Cho Y J. Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings\[J\]. J Comput Appl Math,2006,196:608-618.
[4]  Kazmi K R, Khan F A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems\[J\]. Comput Math Appl,2008,56:1314-1321.
[5]  Huang N J, Deng C X. Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities\[J\]. J Math Anal Appl,2001,256:345-359.
[6]  冯海容,丁协平. q-一致光滑Banach空间含(A,η)-增生算子的广义集值变分包含组\[J\]. 四川师范大学学报:自然科学版,2008,31(3):262-267.
[7]  Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems\[J\]. Math Student,1994,63:123-145.
[8]  邓方平,丁协平. H-单调算子与广义集值变分包含组\[J\]. 四川师范大学学报:自然科学版,2005,28(2):149-153.
[9]  Huang N J, Fang Y P. A new class of general variational inclusions involving maximal η-monotone mappings\[J\]. Publ Math Debrecen,2003,62:83-98.
[10]  Fang Y P, Huang N J, Thompson H B. A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces\[J\]. Comput Math Appl,2005,49:365-374.
[11]  Peng J W, Zhu D L. A new system of generalized mixed quasi-vatiational inclusions with (H,η)-monotone operators\[J\]. J Math Anal Appl,2007,327:175-187.
[12]  Yan W Y, Fang Y P, Huang N J. A new system of set-valued variational inclusions with H-monotone operators\[J\]. Math Inequal Appl,2005,8(3):537-546.
[13]  Cho Y J, Fang Y P, Huang N J. Algorithms for systems of nonlinear variational inequalities\[J\]. J Korean Math Soc,2004,41:489-499.
[14]  Fang Y P, Huang N J. H-monotone operators and system of variational inclusions\[J\]. Commun Appl Nonlinear Anal,2004,11(1):93-101.
[15]  Nadler S B. Multivalued contraction mapping\[J\]. Pacific J Math,1969,30:475-488.
[16]  Ding X P, Yao J C, Zeng L C. Existence and algorithm of solutions for generalized strongly nonlinear mixed variational-like inequalities in Banach spaces\[J\]. Comput Math Appl,2008,55(4):669-679.
[17]  Chang S S, Joseph Lee H W, Chan C K. Generalized system for relaxed cocoerciv variational inequalities in Hilbert spaces\[J\]. Appl Math Lett,2007,20:329-334.
[18]  丁协平. 解非线性混合似变分不等式的预测-校正迭代算法\[J\]. 四川师范大学学报:自然科学版,2003,26(1):1-5.
[19]  丁协平. 求解具有伪单调映象的广义混合拟似变分包含的邻近点算法\[J\]. 四川师范大学学报:自然科学版,2004,27(3):221-227.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133